
Results in Engineering, Год журнала: 2025, Номер unknown, С. 105465 - 105465
Опубликована: Май 1, 2025
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 105465 - 105465
Опубликована: Май 1, 2025
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104268 - 104268
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 15, 2025
Gray Wolf Optimization (GWO), inspired by the social hierarchy and cooperative hunting behavior of gray wolves, is a widely used metaheuristic algorithm for solving complex optimization problems in various domains, including engineering design, image processing, machine learning. However, standard GWO can suffer from premature convergence sensitivity to parameter settings. To address these limitations, this paper introduces Hierarchical Multi-Step (HMS-GWO) algorithm. HMS-GWO incorporates novel hierarchical decision-making framework that more closely mimics observed wolf packs, enabling each type (Alpha, Beta, Delta, Omega) execute structured multi-step search process. This approach enhances exploration exploitation, improves solution diversity, prevents stagnation. The performance evaluated on benchmark suite 23 functions, showing 99% accuracy, with computational time 3 s stability score 0.9. Compared other advanced techniques such as GA, PSO, MMSCC-GWO, WCA, CCS-GWO, demonstrates significantly better performance, faster improved accuracy. While suffers convergence, mitigates issue employing process diversity. These results confirm outperforms terms both speed quality, making it promising across domains enhanced robustness efficiency.
Язык: Английский
Процитировано
0Clean Energy Science and Technology, Год журнала: 2025, Номер 3(2), С. 335 - 335
Опубликована: Март 24, 2025
The growing global demand for electricity necessitates efficient renewable energy solutions, with photovoltaic (PV) systems emerging as a prominent candidate. This study presents novel hybrid Maximum Power Point Tracking (MPPT) algorithm that integrates the Artificial Bee Colony (ABC) optimization method Incremental Conductance (IC) technique, ensuring 100% accurate identification of Global (GMPP) under partial shading conditions. Unlike standalone MPPT methods, proposed approach leverages exploratory capabilities ABC search while utilizing IC fast and precise tracking, achieving convergence time 0.37 s minimal power oscillations 2.7%. Experimental validation demonstrates algorithm’s superior performance, attaining efficiency, significantly outperforming (74%) (99.5%) methods. ABC-IC consistently tracks GMPP, delivering 60 W optimal irradiation (1000 W/m2) surpassing conventional techniques such P&O, FA, PSO in terms speed, robustness, adaptability to dynamic innovative integration bio-inspired deterministic strategies offers highly reliable solution maximizing PV harvesting real-world environments.
Язык: Английский
Процитировано
0IFAC Journal of Systems and Control, Год журнала: 2025, Номер unknown, С. 100304 - 100304
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105236 - 105236
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105465 - 105465
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0