Optimizing sustainable self-compacting mortar properties using natural pozzolan and glass powder as cementitious materials: a combination of artificial neural networks and statistical mixture design approach DOI

Younes Ouldkhaoua,

Mohamed Sahraoui, Zine El-Abidine Laidani

и другие.

Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Май 14, 2025

Язык: Английский

Leveraging machine learning to evaluate the effect of raw materials on the compressive strength of ultra-high-performance concrete DOI Creative Commons

Mohamed Abdellatief,

G. Murali,

Saurav Dixit

и другие.

Results in Engineering, Год журнала: 2025, Номер 25, С. 104542 - 104542

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

Tribological behavior of PLA reinforced with boron nitride nanoparticles using Taguchi and Machine learning approaches DOI Creative Commons

Sundarasetty Harishbabu,

Santosh Kumar Sahu

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104772 - 104772

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Geopolymer foam concrete: a review of pore characteristics, compressive strength and artificial intelligence in GFC strength simulations DOI Creative Commons

Mohamed Abdellatief,

Alaa E. Hassanien,

Mohamed Mortagi

и другие.

Опубликована: Апрель 7, 2025

Язык: Английский

Процитировано

0

Advanced statistical optimization and performance evaluation of self‐compacting geopolymer concrete utilizing industrial by‐products DOI
Naresh Thatikonda, Mainak Mallik, Venkateswara Rao Sarella

и другие.

Structural Concrete, Год журнала: 2025, Номер unknown

Опубликована: Апрель 10, 2025

Abstract This study optimizes self‐compacting geopolymer concrete (SCGC) by incorporating industrial by‐products, such as fly ash, ground‐granulated blast furnace slag, and rice husk ash (RHA), sustainable alternatives to conventional binders. The SCGC mixtures were designed with varying binder compositions activator solutions, their fresh hardened properties systematically evaluated. Workability tests, including slump flow, J‐ring, V‐funnel conducted assess the flowability stability, while compressive, tensile, flexural strength tests performed at 3, 7, 28 days evaluate mechanical performance. Advanced statistical tools, response surface methodology analysis of variance, employed identify key influencing factors develop predictive models. results indicate that an optimal RHA replacement 5%–10% combined a silica‐rich solution significantly enhances SCGC, achieving 28‐day compressive 55.6 MPa maintaining excellent workability. models demonstrated high accuracy in predicting performance trends, validating experimental findings. provides robust framework for optimizing mix designs advancing high‐performance construction materials.

Язык: Английский

Процитировано

0

Performance enhancement of recycled HDPE reinforced with granite micro particles for sustainable low-impact body armor systems DOI Creative Commons

Kibrom Yohannes Welegergs,

Shishay Amare Gebremeskel,

Abrha Gebregergs Tesfay

и другие.

Discover Materials, Год журнала: 2025, Номер 5(1)

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Influence of Silicate Modulus and Eggshell Powder on the Expansion, Mechanical Properties, and Thermal Conductivity of Lightweight Geopolymer Foam Concrete DOI Open Access

Mohamed Abdellatief,

Mohamed Mortagi,

Hamed I. Hamouda

и другие.

Materials, Год журнала: 2025, Номер 18(9), С. 2088 - 2088

Опубликована: Май 2, 2025

To address the demands of low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline in preparation lightweight geopolymer foam concrete (LWGFC). The aim is to investigate influence replacing precursor materials 5–20% ESP on expansion behavior, physical, mechanical characteristics, thermal conductivity LWGFC. Additionally, examines effect varying silicate modulus (SiO2/Na2O ratios 1.0, 1.25, 1.5) properties Incorporating from 5% 20% constant SiO2/Na2O ratio reduced initial setting time, while high controlled time volume. decreased porosity enhanced compressive strength LWGFC but increased conductivity. inclusion more than 10% content negatively affected strength; however, can mitigate detrimental effect. optimal-content mixtures 1.0 was about 0.84 W/m·K, which 2.1% lower 1.25 18.6% those 1.5. High-content had density 1707 kg/m3, 0.97 18.9 MPa at low ratio. Finally, LWGFC, along use an appropriate modulus, resulted improved development decreasing porosity.

Язык: Английский

Процитировано

0

Sustainable earthen plasters: surface resistance enhancement via thermal treatments DOI Creative Commons
Marta Cappai, Giorgio Pia

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112867 - 112867

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Experimental and Machine Learning-Based Analysis of Oxide Ratios in Alumina-Silicate Geopolymer Formation DOI
Ashwin Raut, Anant Lal Murmu, Sanjog Chhetri Sapkota

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Май 8, 2025

Язык: Английский

Процитировано

0

High-performance glass classification using advanced machine learning and deep learning algorithms with a comprehensive feature analysis DOI Creative Commons

Mohammed Bouziane,

Abdelghani Bouziane, Samia Larguech

и другие.

AIP Advances, Год журнала: 2025, Номер 15(5)

Опубликована: Май 1, 2025

Glass classification with accuracy is highly required in construction, automotive, and electronics industries, where material properties like transparency strength are vital. Traditional practices, though effective, time-consuming non-scalable. This paper proposes a solution based on Machine Learning Deep to automate scale up the of glass classification. The work uses dataset 214 samples nine chemical physical properties. Exploratory Data Analysis provides significant patterns verifies pre-determined classes through clustering techniques Gaussian Mixture Models. Advanced learning algorithms Random Forest (RF), XGBoost, Support Vector Machines, Bidirectional Long Short-Term Memory (BiLSTM) networks applied for Findings prove RF XGBoost provide highest accuracy, BiLSTM be best recognizing complex data patterns. Feature importance analysis pinpoints features identifies magnesium barium among those used distinguish between types. detailed evaluation highlights potential AI-based methods revolutionize classifying increased efficacy, details.

Язык: Английский

Процитировано

0

Optimizing sustainable self-compacting mortar properties using natural pozzolan and glass powder as cementitious materials: a combination of artificial neural networks and statistical mixture design approach DOI

Younes Ouldkhaoua,

Mohamed Sahraoui, Zine El-Abidine Laidani

и другие.

Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0