Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 14, 2025
Язык: Английский
Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 14, 2025
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер 25, С. 104542 - 104542
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
3Results in Engineering, Год журнала: 2025, Номер unknown, С. 104772 - 104772
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Structural Concrete, Год журнала: 2025, Номер unknown
Опубликована: Апрель 10, 2025
Abstract This study optimizes self‐compacting geopolymer concrete (SCGC) by incorporating industrial by‐products, such as fly ash, ground‐granulated blast furnace slag, and rice husk ash (RHA), sustainable alternatives to conventional binders. The SCGC mixtures were designed with varying binder compositions activator solutions, their fresh hardened properties systematically evaluated. Workability tests, including slump flow, J‐ring, V‐funnel conducted assess the flowability stability, while compressive, tensile, flexural strength tests performed at 3, 7, 28 days evaluate mechanical performance. Advanced statistical tools, response surface methodology analysis of variance, employed identify key influencing factors develop predictive models. results indicate that an optimal RHA replacement 5%–10% combined a silica‐rich solution significantly enhances SCGC, achieving 28‐day compressive 55.6 MPa maintaining excellent workability. models demonstrated high accuracy in predicting performance trends, validating experimental findings. provides robust framework for optimizing mix designs advancing high‐performance construction materials.
Язык: Английский
Процитировано
0Discover Materials, Год журнала: 2025, Номер 5(1)
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Materials, Год журнала: 2025, Номер 18(9), С. 2088 - 2088
Опубликована: Май 2, 2025
To address the demands of low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline in preparation lightweight geopolymer foam concrete (LWGFC). The aim is to investigate influence replacing precursor materials 5–20% ESP on expansion behavior, physical, mechanical characteristics, thermal conductivity LWGFC. Additionally, examines effect varying silicate modulus (SiO2/Na2O ratios 1.0, 1.25, 1.5) properties Incorporating from 5% 20% constant SiO2/Na2O ratio reduced initial setting time, while high controlled time volume. decreased porosity enhanced compressive strength LWGFC but increased conductivity. inclusion more than 10% content negatively affected strength; however, can mitigate detrimental effect. optimal-content mixtures 1.0 was about 0.84 W/m·K, which 2.1% lower 1.25 18.6% those 1.5. High-content had density 1707 kg/m3, 0.97 18.9 MPa at low ratio. Finally, LWGFC, along use an appropriate modulus, resulted improved development decreasing porosity.
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112867 - 112867
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 8, 2025
Язык: Английский
Процитировано
0AIP Advances, Год журнала: 2025, Номер 15(5)
Опубликована: Май 1, 2025
Glass classification with accuracy is highly required in construction, automotive, and electronics industries, where material properties like transparency strength are vital. Traditional practices, though effective, time-consuming non-scalable. This paper proposes a solution based on Machine Learning Deep to automate scale up the of glass classification. The work uses dataset 214 samples nine chemical physical properties. Exploratory Data Analysis provides significant patterns verifies pre-determined classes through clustering techniques Gaussian Mixture Models. Advanced learning algorithms Random Forest (RF), XGBoost, Support Vector Machines, Bidirectional Long Short-Term Memory (BiLSTM) networks applied for Findings prove RF XGBoost provide highest accuracy, BiLSTM be best recognizing complex data patterns. Feature importance analysis pinpoints features identifies magnesium barium among those used distinguish between types. detailed evaluation highlights potential AI-based methods revolutionize classifying increased efficacy, details.
Язык: Английский
Процитировано
0Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0