
Actuators, Год журнала: 2025, Номер 14(4), С. 165 - 165
Опубликована: Март 26, 2025
This work investigates the implementation of Deep Deterministic Policy Gradient (DDPG) algorithm to enhance target-reaching capability seven degree-of-freedom (7-DoF) Franka Pandarobotic arm. A simulated environment is established by employing OpenAI Gym, PyBullet, and Panda Gym. After 100,000 training time steps, DDPG attains a success rate 100% an average reward −1.8. The actor loss critic values are 0.0846 0.00486, respectively, indicating improved decision-making accurate value function estimations. simulation results demonstrate efficiency in improving robotic arm performance, highlighting its potential for application improve manipulation.
Язык: Английский