Ñawparisun - Revista de Investigación Científica,
Год журнала:
2023,
Номер
3(Vol. 4, Num. 3), С. 39 - 47
Опубликована: Окт. 31, 2023
La
gestión
de
los
recursos
hídricos
requiere
una
buena
aproximación
la
cantidad
agua
cuenca.
Sin
embargo,
datos
flujo
espacio-temporales
caudales
no
están
disponibles
en
cuencas
con
escasez
datos.
Los
conjuntos
climáticos
globales
(CDCG)
brindan
fuente
alternativa
para
aplicaciones
hidrometeorológicas
regiones
No
obstante,
evaluación
CDCG
es
importante
cuantificar
su
precisión,
error
y
sesgo
las
estimaciones.
Este
estudio
evaluó
el
rendimiento
hidrológico
del
producto
TerraClimate
(TC)
modelización
cuenca
río
Huancané
modelo
GR2M
Perú.
Se
realizó
conjunto
precipitación
evapotranspiración
potencial
(ETo)
TC,
considerando
tres
enfoques:
1)
pixel
a
punto
estaciones
meteorológicas,
2)
valores
medios
sobre
cuenca,
3)
como
forzantes
hidrológica.
En
consecuencia,
se
utilizaron
cinco
métricas
desempeño,
saber,
raíz
cuadrático
medio
(RMSE),
coeficiente
correlación
(r),
porcentual
(PBIAS),
eficiencia
Nash
(NSE)
logarítmica
Nash-Sutcliffe
(NSE-L).
resultados
revelaron
que
TC
tienen
un
muy
bueno,
al
ser
introducidos
modelado
resultó
satisfactorio
periodos
húmedos,
cambio,
estiaje
son
tan
eficientes
observados.
Estos
hallazgos
mejor
comprensión
siguen
siendo
útiles
cuando
observaciones
terrestres
limitados
o
disponibles,
todo
estimar
disponibilidad
hídrica
sin
información.
Journal of Hydrology Regional Studies,
Год журнала:
2024,
Номер
52, С. 101678 - 101678
Опубликована: Янв. 28, 2024
Different
climates
in
Iran,
including
the
northwestern
regions
(cold),
southern
coasts
(hot
and
humid)
central
dry).
TerraClimate
network
data
(5
km
resolution)
from
40
years
(1981–2020)
was
used
to
investigate
changes
trend
breaking
point
of
reference
crop
evapotranspiration
(ETo)
time
series
for
different
Iran.
Statistical
assessment
indices
(RMSE,
R2,
BIAS)
were
initially
employed
assess
accuracy
with
ground
stations.
The
temporal-spatial
alterations
trend,
ETo,
its
extreme
values
then
investigated
using
Mann-Kendall,
Sen's
Slope,
Pettitt,
Bayesian
quantile
regression
tests.
correlation
coefficient
between
monthly
gridded
ETo
calculated
be
more
than
0.95,
an
average
value
BIAS
–1.1.
studied
had
increased.
increasing
tendency
high
highest
slopes
cold
winter
(slope
>70
%),
hot/dry
spring
summer
hot/humid
50
%).
Additionally,
findings
Pettitt's
test
suggest
that
three
Iran
a
rising
break
autumn
(hot/dry),
(hot/humid)
seasons,
respectively.
This
indicates
rapid
have
been
common
1996
2000.
Journal of Hydrology,
Год журнала:
2024,
Номер
631, С. 130672 - 130672
Опубликована: Янв. 23, 2024
Accurate
estimates
of
rainfall
interception
loss
are
crucial
for
modeling
the
water
balance
forested
areas.
However,
considerable
regional
variability
exists
in
process,
and
much
uncertainty
remains.
This
study
enhances
estimation
at
global
scale
by
integrating
remote
sensing
products
into
parameterization
Gash's
analytical
model.
We
refer
to
this
enhanced
configuration
as
Global
Interception
Model
(GIM).
High-resolution
satellite
imagery
was
used
derive
vegetation
indices
spectral
reflectance,
which
were
then
employed
linear
regression
models
estimate
canopy
cover
fraction
(c)
storage
capacity
(Sv).
Their
importance
ecological
processes,
land
resource
management,
makes
these
parameters
particular
interest.
The
other
two
required
run
Gash
model,
namely
mean
evaporation
rates
under
saturated
conditions,
obtained
via
integration
MWSEP
ERA5-Land
meteorological
products.
Modeling
performance
evaluated
using
situ
measurements
gridded
datasets.
GIM
exhibited
a
superior
statistic
when
compared
PMLv2
GLEAMv3.7a.
Our
results
demonstrate
high
potential
approach
improving
accuracy
from
local
scales.
Journal of Hydrology,
Год журнала:
2024,
Номер
633, С. 131016 - 131016
Опубликована: Март 5, 2024
Satellite-based
and
reanalysis
precipitation
products
are
widely
adopted
as
complementary
information
to
in
situ
measurements
for
estimating
river
discharge
using
hydrological
modelling.
However,
there
is
still
a
notable
research
gap
the
literature
associated
with
assessing
accuracy
of
satellite-based
or
different
tropical
sub-tropical
catchments
at
large-sampling
modelling
sensitivity
analysis.
We
investigated
precipitation,
model
performance
parameter
related
seven
data
sets
based
on
satellite
products,
i.e.,
CHIRPS,
TRMM,
GLDAS,
IMERG,
MERRA-2,
PERSIANN-CDR,
ERA5
over
714
contrasting
subtropical
located
Brazil.
used
Génie
Rural
Journalier
4
(GR4J)
simulate
processes
two
approaches
calibration:
measured
ground-based
(approach
I)
each
individual
satellite/reanalysis
II)
calibrate
models.
The
results
showed
that
tend
overestimate
exception
MERRA-2.
CHIRPS
only
product
produces
unbiased
estimates
most
catchments.
calibration
individually
improved
performance.
MERRA-2
good
terms
both,
estimation
simulation
period.
In
validation
period,
best
KGE
were
IMERG
TRMM
(KGE
>
0.64).
errors
better
compensated
via
wet
regions.
varies
according
input,
climate,
catchment
aridity.
Overall,
all
exhibited
their
worst
arid
This
study
helps
improve
our
understanding
response
regions
while
also
providing
key
insights
into
reliability
rainfall
streamflow
simulation.
valuable
hydrometeorological
applications,
climate
change
assessment,
water
resources
disaster
management,
especially
relatively
sparse
density
stations.
Remote Sensing,
Год журнала:
2023,
Номер
15(9), С. 2247 - 2247
Опубликована: Апрель 24, 2023
Monitoring
and
managing
groundwater
resources
is
critical
for
sustaining
livelihoods
supporting
various
human
activities,
including
irrigation
drinking
water
supply.
The
most
common
method
of
monitoring
well
level
measurements.
These
records
can
be
difficult
to
collect
maintain,
especially
in
countries
with
limited
infrastructure
resources.
However,
long-term
data
collection
required
characterize
evaluate
trends.
To
address
these
challenges,
we
propose
a
framework
that
uses
from
the
Gravity
Recovery
Climate
Experiment
(GRACE)
mission
downscaling
models
generate
higher-resolution
(1
km)
predictions.
designed
flexible,
allowing
users
implement
any
machine
learning
model
interest.
We
selected
four
models:
deep
model,
gradient
tree
boosting,
multi-layer
perceptron,
k-nearest
neighbors
regressor.
effectiveness
framework,
offer
case
study
Sunflower
County,
Mississippi,
using
validate
Overall,
this
paper
provides
valuable
contribution
field
resource
management
by
demonstrating
remote
sensing
techniques
improve
resource,
those
who
seek
faster
way
begin
use
datasets
applications.
Remote Sensing,
Год журнала:
2024,
Номер
16(15), С. 2834 - 2834
Опубликована: Авг. 2, 2024
Monitoring
areas
susceptible
to
desertification
contributes
the
strategic
development
of
regions
located
in
environments
extreme
hydric
and
social
vulnerability.
Therefore,
objective
this
study
is
evaluate
process
soil
degradation
Desertification
Nucleus
Cabrobó
(DNC)
over
past
three
decades
using
remote
sensing
techniques.
This
used
primary
climatic
data
from
TerraClimate,
geospatial
land
use
cover
(LULC),
vegetation
indices
(SAVI
LAI)
via
Google
Earth
Engine
(GEE)
Landsat
5/TM
8/OLI
satellites,
established
aridity
index
(AI)
1992
2022.
The
results
indicated
10
predominant
LULC
classes
with
native
suppression,
particularly
agriculture
urbanization.
SAVI
ranged
−0.84
0.90,
high
values
influenced
by
La
Niña
episodes
increased
rainfall;
conversely,
El
Niño
worsened
rainfall
regime
DNC
region.
Based
on
Standardized
Precipitation
Index
(SPI),
it
was
possible
correlate
normal
severe
drought
events
years
under
influence
phases.
In
summary,
AI
images
that
remained
semi-arid
transition
an
arid
region
a
cyclical
low-frequency
phenomenon,
occurring
specific
periods
directly
phenomena.
Mann–Kendall
analysis
showed
no
increasing
trend
AI,
Tau
−0.01
p-value
0.97.
During
analyzed
period,
there
increase
Non-Vegetated
Areas,
which
growing
0.42
analysis,
representing
exposed
areas.
Annual
meteorological
conditions
within
pattern
region,
annual
averages
precipitation
actual
evapotranspiration
(ETa)
close
450
mm
average
temperature
24
°C,
showing
changes
only
during
events,
did
not
show
significant
or
decreasing
trends
analysis.
Geomatics Natural Hazards and Risk,
Год журнала:
2025,
Номер
16(1)
Опубликована: Фев. 25, 2025
Gridded
Precipitation
Products
(GPPs)
could
exhibit
discrepancies
related
to
detecting
precipitation
amounts
and
patterns.
This
paper
aims
evaluate
the
accuracy
of
five
GPPs
currently
in
operational
production
over
Tensift
basin
southern
Mediterranean.
The
are
reanalysis-based
(ERA5,
ERA5-Land,
MERRA-2)
multi-source
data
fusion
(TerraClimate,
MSWEPv2.8).
Their
annual
monthly
compared
observations
from
fourteen
ground
gauges
entire
period
1980
2021
each
decade
this
period.
A
set
statistical
metrics,
such
as
Kling
Gupta
Efficiency
(KGE)
Root
Mean
Square
Error
(RMSE),
well
Bias,
served
carry
out
evaluation.
Four
main
findings
be
highlighted:
(i)
have,
general,
a
good
correlation
with
gauge
data;
hence
they
used
study
temporal
variability
observed
precipitation.
(ii)
ERA5-Land
does
not
bring
significant
improvements
estimates
apart
its
finer
spatial
resolution.
(iii)
perform
better
plain
than
mountains.
(iv)
TerraClimate
MSWEPv2.8
present
consistency
across
decades.
ERA5
TerraClimate,
longest
series,
were
visualize
trends
basin.