
Remote Sensing of Environment, Год журнала: 2025, Номер 324, С. 114738 - 114738
Опубликована: Апрель 17, 2025
Язык: Английский
Remote Sensing of Environment, Год журнала: 2025, Номер 324, С. 114738 - 114738
Опубликована: Апрель 17, 2025
Язык: Английский
Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105942 - 105942
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
3Scientific Data, Год журнала: 2024, Номер 11(1)
Опубликована: Дек. 18, 2024
Urban building height, as a fundamental 3D urban structural feature, has far-reaching applications. However, creating readily available datasets of recent heights with fine spatial resolutions and global coverage remains challenging task. Here, we provide 150-m dataset around 2020 by combining the spaceborne lidar (Global Ecosystem Dynamics Investigation, GEDI), multi-sourced data (Landsat-8, Sentinel-2, Sentinel-1), topographic data. The validation results revealed that GEDI-estimated height samples were effective compared to reference (Pearson's r = 0.81, RMSE 3.58 m). mapping product also demonstrated good performance, indicated its strong correlation 0.71, 4.73 Compared currently existing datasets, it holds ability resolution (150 m) great level inherent details about heterogeneity flexibility updating using GEDI inputs. This will boost future studies across many fields, including environmental, ecological, social sciences.
Язык: Английский
Процитировано
3International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 136, С. 104398 - 104398
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2025, Номер 17(7), С. 1204 - 1204
Опубликована: Март 28, 2025
This study develops a globally adaptable and scalable methodology for high-resolution, building-level population mapping, integrating Earth observation techniques, geospatial data acquisition, machine learning to enhance estimation in rapidly urbanizing cities, particularly developing countries. Using Bangkok, Thailand, as case study, this research presents problem-driven approach that leverages open data, including Overture Maps OpenStreetMap (OSM), alongside Digital Elevation Models, overcome limitations availability, granularity, quality. integrates morphological terrain analysis learning-based classification models estimate building ancillary attributes such footprint, height, usage, applying micro-dasymetric mapping techniques refine distribution estimates. The findings reveal notable degree of accuracy within residential zones, whereas performance commercial cultural areas indicates room improvement. Challenges identified mixed-use townhouse types are attributed issues misclassification constraints input data. underscores the importance AI remote sensing resolving urban scarcity challenges. By addressing critical gaps acquisition processing, provides scalable, cost-effective solutions integration multi-source contribute sustainable development, disaster resilience, resource planning. reinforce transformative role open-access applications, supporting real-time decision-making enhanced resilience strategies evolving environments.
Язык: Английский
Процитировано
0Remote Sensing of Environment, Год журнала: 2025, Номер 324, С. 114738 - 114738
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0