Segmentation Performance and Mapping of Dunes in Multi-Source Remote Sensing Images Using Deep Learning DOI Creative Commons

Pengyu Zhao,

Jun An,

Jianghua Zheng

и другие.

Land, Год журнала: 2025, Номер 14(4), С. 713 - 713

Опубликована: Март 26, 2025

Dunes are key geomorphological features in aeolian environments, and their automated mapping is essential for ecological management sandstorm disaster early warning desert regions. However, the diversity complexity of dune morphology present significant challenges when using traditional classification methods, particularly feature extraction, model parameter optimization, large-scale mapping. This study focuses on Gurbantünggüt Desert China, utilizing Google Earth Engine (GEE) cloud platform alongside multi-source remote sensing data from Landsat-8 (30 m) Sentinel-2 (10 m). By integrating three deep learning models—DeepLab v3, U-Net, U-Net++—this research evaluates impact batch size, image resolution, structure segmentation performance, ultimately producing a high-precision type map. The results indicate that (1) size significantly affects optimization. Increasing 4 to 12 improves overall accuracy (OA) 69.65% 84.34% 89.19% 92.03% Sentinel-2. further 16 slower OA improvement, with reaching 86.63% 92.32%, suggesting gradient optimization approaches saturation. (2) higher resolution greatly enhances ability capture finer details, (OA: 92.45%) being 5.82% than 86.63%). (3) U-Net performs best images 92.45%, F1: 90.45%), improving by 0.13% compared DeepLab provides more accurate boundary delineation. v3 demonstrates greater adaptability low-resolution images. presents approach integrates offering framework dynamic monitoring fine-scale desert’s geomorphology.

Язык: Английский

Spatiotemporal patterns of annual clear-cutting distribution in tropical and subtropical regions of China with time series Landsat and CCDC DOI Creative Commons
Mingxing Zhou, Guiying Li, Dengsheng Lu

и другие.

Geo-spatial Information Science, Год журнала: 2025, Номер unknown, С. 1 - 18

Опубликована: Янв. 17, 2025

Язык: Английский

Процитировано

0

Mapping built infrastructure in semi-arid systems using data integration and open-source approaches for image classification DOI Creative Commons
Megan Dolman, Nicholas Kolarik, T. Trevor Caughlin

и другие.

Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101472 - 101472

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A rapidly updated mapping method for high-resolution global impervious surface area (Hi-GISA) products DOI
Zhongchang Sun, Wenjie Du, Sijia Li

и другие.

Science Bulletin, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Crop Residue Burning in North‐Western India: Emission Estimation and Uncertainty Quantification DOI Creative Commons
Rupal Ambulkar, Gaurav Govardhan,

Srujan Gavhale

и другие.

Journal of Geophysical Research Atmospheres, Год журнала: 2025, Номер 130(4)

Опубликована: Фев. 12, 2025

Abstract Air quality in India faces significant risk from agricultural residue burning, especially Punjab and Haryana, which are pivotal to the world's second‐largest agrarian economy. This study quantifies emissions post‐monsoon biomass burning (10 October–30 November 2022) these states using VIIRS fire detection data Sentinel‐2‐derived burnt areas. Ground validation via district‐level surveys aligns with findings of our study. Results show 51% total crop area was burned (14,700 km 2 Punjab; 8,300 Haryana), leading substantial PM 2.5 (54.28 Gg; 7.94 Gg), CH 4 (25.63 3.75 CO (1,100.3 195.7 NH 3 (0.83 0.15 SO (0.68 0.12 (62.1 11.04 Gg). Emissions about 6.5 times higher than Haryana attributable greater (∼14,700 ), yield, elevated residue‐to‐crop ratios. Compared VIIRS, Sentinel‐2 provides approximately 3.6 emission estimates, reflecting improved detection. District‐level variations underscore influence diverse farming practices, weather, management. An uncertainty analysis, derived multiple estimates methodologies, highlights regional disparities: exhibits highest both CO, respectively, showing least. Understanding uncertainties is vital for forecasting air pollution downwind cities such as New Delhi formulating targeted mitigation strategies.

Язык: Английский

Процитировано

0

Automatic Mapping of 10 m Tropical Evergreen Forest Cover in Central African Republic with Sentinel-2 Dynamic World Dataset DOI Creative Commons
Wenqiong Zhao,

Xinyan Zhong,

Xiaodong Li

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(4), С. 722 - 722

Опубликована: Фев. 19, 2025

Tropical evergreen forests represent the richest biodiversity in terrestrial ecosystems, and fine spatial-temporal resolution mapping of these is essential for study conservation this vital natural resource. The current methods tropical frequently exhibit coarse spatial lengthy production cycles. This can be attributed to inherent challenges associated with monitoring diverse surface changes persistence cloudy, rainy conditions tropics. We propose a novel approach automatically map annual 10 m forest covers from 2017 2023 Sentinel-2 Dynamic World dataset biodiversity-rich conservation-sensitive Central African Republic (CAR). Copernicus Global Land Cover Layers (CGLC) Forest Change (GFC) products were used first track stable samples. Then, initial cover maps generated by determining threshold each yearly median probability maps. From 2023, modified finally produced NEFI (Non-Evergreen Index) images estimated thresholds. results proposed method achieved an overall accuracy >94.10% Cohen’s Kappa >87.63% across all years (F1-Score > 94.05%), which represents significant improvement over performance previous methods, including CGLC based on World. Our findings demonstrate that provides detailed characteristics time-series change Republic, substantial consistency years.

Язык: Английский

Процитировано

0

A global Swin-Unet Sentinel-2 surface reflectance-based cloud and cloud shadow detection algorithm for the NASA Harmonized Landsat Sentinel-2 (HLS) dataset DOI Creative Commons
Haiyan Huang, David P. Roy, Hugo De Lemos

и другие.

Science of Remote Sensing, Год журнала: 2025, Номер unknown, С. 100213 - 100213

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Using Landsat 8 and 9 operational land imager (OLI) data to characterize geometric distortion and improve geometric correction of Landsat Multispectral Scanner (MSS) imagery DOI Creative Commons
Lin Yan, David P. Roy

Remote Sensing of Environment, Год журнала: 2025, Номер 321, С. 114679 - 114679

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022 DOI Creative Commons
Xuemeng Tian, Davide Consoli, Martijn Witjes

и другие.

Earth system science data, Год журнала: 2025, Номер 17(2), С. 741 - 772

Опубликована: Фев. 26, 2025

Abstract. The production and evaluation of the analysis-ready cloud-optimized (ARCO) data cube for continental Europe (including Ukraine, UK, Türkiye), derived from Landsat dataset version 2 (ARD V2) produced by Global Land Analysis Discovery (GLAD) team covering period 2000 to 2022, is described. consists 17 TB at a 30 m resolution includes bimonthly, annual, long-term spectral indices on various thematic topics, including surface reflectance bands, normalized difference vegetation index (NDVI), soil adjusted (SAVI), fraction absorbed photosynthetically active radiation (FAPAR), snow (NDSI), water (NDWI), tillage (NDTI), minimum (minNDTI), bare (BSF), number seasons (NOS), crop duration ratio (CDR). was developed with intention provide comprehensive feature space environmental modeling mapping. quality time series assessed (1) assessing accuracy gap-filled bimonthly artificially created gaps; (2) visual examination artifacts inconsistencies; (3) plausibility checks ground survey data; (4) predictive tests, examples organic carbon (SOC) land cover (LC) classification. reconstruction demonstrates high accuracy, root mean squared error (RMSE) smaller than 0.05, R2 higher 0.6, across all bands. indicates that product complete consistent, except winter periods in northern latitudes high-altitude areas, where cloud density introduce significant gaps hence many remain. check further shows logically statistically capture processes. BSF showed strong negative correlation (−0.73) coverage data, while minNDTI had moderate positive (0.57) Eurostat practice data. detailed temporal characteristics provided different tiers predictors this proved be important both regression LC classification experiments based 60 723 LUCAS observations: (tier 4) were particularly valuable mapping SOC LC, coming out top variable importance assessment. Crop-specific (NOS CDR) limited value tested applications, possibly due noise or insufficient quantification methods. made available https://doi.org/10.5281/zenodo.10776891 (Tian et al., 2024) under CC-BY license will continuously updated.

Язык: Английский

Процитировано

0

Landsat Program DOI
Edward Kaita,

Terry Arvidson,

Julia A. Barsi

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Процитировано

0

Spatiotemporal evolution of vegetation phenology and its response to environmental factors in the upper and middle reaches of the Yellow River Basin DOI
Xue Li,

Kunxia Yu,

Guoce Xu

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 380, С. 124970 - 124970

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0