Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 364 - 378
Опубликована: Дек. 30, 2024
Язык: Английский
Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 364 - 378
Опубликована: Дек. 30, 2024
Язык: Английский
Sensors, Год журнала: 2025, Номер 25(1), С. 228 - 228
Опубликована: Янв. 3, 2025
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers extract insights from Multisource Remote Sensing. This study aims use these technologies for mapping summer winter Land Use/Land Cover features Cuenca de la Laguna Merín, Uruguay, while comparing performance Random Forests, Support Vector Machines, Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 Shuttle Radar Topography Mission imagery, Google Engine, training validation datasets quoted methods involve creating a multisource database, conducting feature importance analysis, developing models, supervised classification performing accuracy assessments. Results indicate low significance microwave inputs relative optical features. Short-wave infrared bands transformations such as Normalised Vegetation Index, Surface Water Index Enhanced demonstrate highest importance. Accuracy assessments that various classes is optimal, particularly rice paddies, which play vital role country’s economy highlight significant environmental concerns. However, challenges persist reducing confusion between classes, regarding natural vegetation versus seasonally flooded vegetation, well post-agricultural fields/bare land herbaceous areas. Forests Trees exhibited superior compared Machines. Future research should explore approaches Deep Learning pixel-based object-based integration address identified challenges. These initiatives consider data combinations, including additional indices texture metrics derived Grey-Level Co-Occurrence Matrix.
Язык: Английский
Процитировано
0Urban forestry & urban greening, Год журнала: 2025, Номер 105, С. 128696 - 128696
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133269 - 133269
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127796 - 127796
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2024, Номер 948, С. 174678 - 174678
Опубликована: Июль 9, 2024
Язык: Английский
Процитировано
3Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133072 - 133072
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Science of Remote Sensing, Год журнала: 2024, Номер 10, С. 100175 - 100175
Опубликована: Ноя. 2, 2024
Язык: Английский
Процитировано
1ACS ES&T Water, Год журнала: 2024, Номер 4(8), С. 3110 - 3114
Опубликована: Июль 15, 2024
Язык: Английский
Процитировано
0Korean Journal of Remote Sensing, Год журнала: 2024, Номер 40(5-1), С. 617 - 627
Опубликована: Окт. 31, 2024
Язык: Английский
Процитировано
0GIScience & Remote Sensing, Год журнала: 2024, Номер 61(1)
Опубликована: Ноя. 13, 2024
Arctic and subarctic landscapes have unique hydrological limnological features are now experiencing rapid change due to climate warming permafrost thaw. The highly abundant lakes, ponds, rivers across these play an increasingly important role in global biogeochemical cycles sentinels of environmental changes. However, studying remote waters poses challenges for both situ sampling remote-sensing analysis. Here we developed a synergistic strategy that combined PlanetScope Sentinel-2 satellite data estimate limnicity (water fraction per land surface), limnodensity (density water bodies), limnodiversity (optical diversity bodies) along boreal forest-tundra transect, from the non-permafrost continuous zones western Nunavik (Subarctic Canada). Our analyses show this region hosts 335,281 bodies, around 90% 0.0001 0.01 km2 size range. In bedrock outcrops, large bodies were mostly associated with glacially carved depressions (higher limnicity). contrast, small predominately found sedimentary infills valleys limnodensity). discontinuous zone had highest limnodiversity. This was likely thaw (thermokarst), particularly collapse, subsidence, erosion palsas (organic mounds), resulting ponds black- brown-colored waters, lithalsas (mineral brown, light-brown, sometimes white-colored waters. Some limnodense limnodiverse landscapes, although covering only 2 7% total area study region, contained over one-third (34%) number 97% which <0.01 km2; they accounted proportion black-colored (23%), but high brown- (60%) light (92%) throughout region. research underscores utility optical sensing assessing body types evaluating their individual distinct aquatic responses change. dataset may be used improve modeling carbon fluxes by better categorizing affected organic or mineral soil type settings. is factor dictating responses, effects on albedo, feedbacks, ecosystem dynamics framework here applied elsewhere world densities variable properties.
Язык: Английский
Процитировано
0