AI-Powered VM Selection: Amplifying Cloud Performance with Dragonfly Algorithm DOI Creative Commons

Sindhu Rashmi,

Vikas Siwach,

Harkesh Sehrawat

и другие.

Heliyon, Год журнала: 2024, Номер 10(19), С. e37912 - e37912

Опубликована: Сен. 13, 2024

The convenience and cost-effectiveness offered by cloud computing have attracted a large customer base. In environment, the inclusion of concept virtualization requires careful management resource utilization energy consumption. With rapidly increasing consumer base data centers, it faces an overwhelming influx Virtual Machine (VM) requests. technology, mapping these requests onto actual hardware is known as VM placement which significant area research. article presents Dragonfly Algorithm integrated with Modified Best Fit Decreasing (DA-MBFD) proposed to minimize overall power consumption migration count. DA-MBFD uses MBFD for ranking VMs based on their requirement, then Minimization Migration (MM) algorithm hotspot detection followed DA optimize replacement from overutilized hosts. compared few other existing techniques show its efficiency. comparative analysis against E-ABC, E-MBFD, MBFD-MM shows %improvement reflecting reduction in 8.21 %, 8.6 6.77 violations service level agreement 9.25 6.98 %-7.86 % number migrations 6.65 8.92 7.02 respectively.

Язык: Английский

Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets DOI
Bo Zeng,

Yinyu Zhou,

Xinzhu Xu

и другие.

Applied Energy, Год журнала: 2023, Номер 357, С. 122406 - 122406

Опубликована: Дек. 12, 2023

Язык: Английский

Процитировано

14

Review and analysis of secure energy efficient resource optimization approaches for virtual machine migration in cloud computing DOI
Harmeet Kaur, Abhineet Anand

Measurement Sensors, Год журнала: 2022, Номер 24, С. 100504 - 100504

Опубликована: Окт. 11, 2022

Язык: Английский

Процитировано

23

Dynamic Virtual Machine Consolidation in a Cloud Data Center Using Modified Water Wave Optimization DOI
Rambabu Medara, Ravi Shankar Singh

Wireless Personal Communications, Год журнала: 2023, Номер 130(2), С. 1005 - 1023

Опубликована: Март 15, 2023

Язык: Английский

Процитировано

10

An energy-efficient task scheduling method for heterogeneous cloud computing systems using capuchin search and inverted ant colony optimization algorithm DOI

Safdar Rostami,

Ali Broumandnia, Ahmad Khademzadeh

и другие.

The Journal of Supercomputing, Год журнала: 2023, Номер 80(6), С. 7812 - 7848

Опубликована: Ноя. 10, 2023

Язык: Английский

Процитировано

10

A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization DOI
Ouzhu Han, Tao Ding, Yang Miao

и другие.

Applied Energy, Год журнала: 2024, Номер 358, С. 122590 - 122590

Опубликована: Янв. 8, 2024

Язык: Английский

Процитировано

4

Enhanced virtual machine migration for energy sustainability optimization in cloud computing through knowledge acquisition DOI Creative Commons

Doraid Seddiki,

Francisco Javier Maldonado Carrascosa, Sebastián García Galán

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 119, С. 109506 - 109506

Опубликована: Июль 26, 2024

Cloud computing has revolutionized the way businesses and organizations manage their computational workloads. However, massive data centers that support cloud services consume a lot of energy, making energy sustainability critical concern. To address this challenge, article introduces an innovative approach to optimize consumption in environments through knowledge acquisition. The proposed method uses Knowledge Acquisition version Gray Wolf Optimizer (KAGWO) algorithm collect on availability use renewable within centers, contributing improved computing. KAGWO is introduced provide systematic for addressing complex problems by integrating global optimization principles, enhancing decision-making processes with fewer configuration parameters. This conducts comparative analysis between Swarm Intelligence Approach (KASIA) Genetic Algorithm (Pittsburgh) highlight benefits advantages former. By comparing performance KAGWO, Pittsburgh KASIA terms sustainability, study offers valuable insights into effectiveness knowledge-acquisition-based algorithms optimizing usage environments. results demonstrate outperforms offering more accurate acquisition capabilities, resulting enhanced sustainability. Overall, demonstrates substantial improvements ranging from 0.53% 5.23% over previous paper baselines, particular significance found slightly outperforming new small, medium large scenarios.

Язык: Английский

Процитировано

4

Genetic-Based Virtual Machines Consolidation Strategy With Efficient Energy Consumption in Cloud Environment DOI Creative Commons
Mohammed Radi, Ali A. Alwan, Yonis Gulzar

и другие.

IEEE Access, Год журнала: 2023, Номер 11, С. 48022 - 48032

Опубликована: Янв. 1, 2023

In cloud computing environments, virtualization is used to share physical machine (PM) resources among multiple users by creating virtual machines (VMs). Running the PM consumes a large amount of energy. Additionally, will be overloaded when demand for exceeds capacity. This overload on leads violations Service Level Agreements (SLAs). Dynamic VM consolidation techniques use live migration VMs optimize resource utilization and minimize energy consumption. However, excessive impacts negatively application performance due incurred overhead at runtime. paper presents modified genetic-based (MGVMC) strategy that aims replace in an online manner taking into account consumption, SLA violations, number migrations. The MGVMC utilizes genetic algorithm migrate appropriate way minimizes over-utilized under-utilized (PMs) as low possible. was evaluated using CloudSim Plus framework with workload traces from PlanetLab platform. experimental results revealed achieved significant improvement migrations compared other recent approaches. These demonstrate effectiveness optimizing environment.

Язык: Английский

Процитировано

9

EMaC: Dynamic VM Consolidation Framework for Energy-Efficiency and Multi-metric SLA Compliance in Cloud Data Centers DOI
Vikas Mongia

SN Computer Science, Год журнала: 2024, Номер 5(5)

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

3

Task Consolidation Algorithm to Improve the Efficiency of Cloud Computing Environment DOI
Sachin Kumar, Raghvendra Pratap Singh,

Rajinder Vir

и другие.

SSRN Electronic Journal, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Online real-time energy consumption optimization with resistance to server switch jitter for server clusters DOI
Zhi Xiong,

Linhui Tan,

Jianlong Xu

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(3)

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

0