Scientia Horticulturae, Год журнала: 2024, Номер 338, С. 113561 - 113561
Опубликована: Авг. 18, 2024
Язык: Английский
Scientia Horticulturae, Год журнала: 2024, Номер 338, С. 113561 - 113561
Опубликована: Авг. 18, 2024
Язык: Английский
Euphytica, Год журнала: 2025, Номер 221(3)
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0Horticultural Plant Journal, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0BMC Plant Biology, Год журнала: 2025, Номер 25(1)
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0Plant Phenomics, Год журнала: 2024, Номер 6
Опубликована: Янв. 1, 2024
Plant sensors are commonly used in agricultural production, landscaping, and other fields to monitor plant growth environmental parameters. As an important basic parameter monitoring, leaf inclination angle (LIA) not only influences light absorption pesticide loss but also contributes genetic analysis phenotypic data collection. The measurements of LIA provide a basis for crop research as well management, such water loss, absorption, illumination radiation. On the one hand, existing efficient solutions, represented by detection ranging (LiDAR), can average distribution plot. labor-intensive schemes hand show high accuracy. However, methods suffer from low automation weak leaf–plant correlation, limiting application individual phenotypes. To improve efficiency measurement correlation between plant, we design image-phenotype-based noninvasive optical sensor system, which combines multi-processes implemented via computer vision technologies RGB images collected physical sensing devices. Specifically, utilize object associate leaves with plants adopt 3-dimensional reconstruction techniques recover spatial information computational space. Then, propose continuity-based segmentation algorithm combined graphical operation implement extraction key points. Finally, seek connection space actual put forward method transformation realize localization recovery Overall, our solution is characterized noninvasiveness, full-process automation, strong enables at cost. In this study, validate Auto-LIA practicality compare accuracy best that acquired expensive invasive LiDAR device. Our demonstrates its competitiveness usability much lower equipment cost, 2. 5° less than widely LiDAR. intelligent processing system signals, provides fully automated LIA, improving monitoring physiological protection. We make code publicly available http://autolia.samlab.cn .
Язык: Английский
Процитировано
3Plant Cell Reports, Год журнала: 2024, Номер 43(4)
Опубликована: Март 6, 2024
Язык: Английский
Процитировано
2Scientia Horticulturae, Год журнала: 2024, Номер 338, С. 113561 - 113561
Опубликована: Авг. 18, 2024
Язык: Английский
Процитировано
2