A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India) DOI
Md Hasanuzzaman, Aznarul Islam, Biswajit Bera

и другие.

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2022, Номер 127, С. 103198 - 103198

Опубликована: Июль 11, 2022

Язык: Английский

Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods DOI
Hüseyın Akay

Soft Computing, Год журнала: 2021, Номер 25(14), С. 9325 - 9346

Опубликована: Май 26, 2021

Язык: Английский

Процитировано

105

Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh DOI

Mahfuzur Rahman,

Ningsheng Chen, Ahmed Elbeltagi

и другие.

Journal of Environmental Management, Год журнала: 2021, Номер 295, С. 113086 - 113086

Опубликована: Июнь 18, 2021

Язык: Английский

Процитировано

90

A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem DOI
Ali Najah Ahmed, To Van Lam, Nguyễn Duy Hùng

и другие.

Applied Soft Computing, Год журнала: 2021, Номер 105, С. 107282 - 107282

Опубликована: Март 18, 2021

Язык: Английский

Процитировано

85

Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms DOI
Mohammad Mehrabi, Hossein Moayedi

Environmental Earth Sciences, Год журнала: 2021, Номер 80(24)

Опубликована: Ноя. 27, 2021

Язык: Английский

Процитировано

66

Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets DOI Creative Commons
Jun Liu, Jiyan Wang, Junnan Xiong

и другие.

Remote Sensing, Год журнала: 2021, Номер 13(23), С. 4945 - 4945

Опубликована: Дек. 5, 2021

Flash floods are considered to be one of the most destructive natural hazards, and they difficult accurately model predict. In this study, three hybrid models were proposed, evaluated, used for flood susceptibility prediction in Dadu River Basin. These integrate a bivariate statistical method fuzzy membership value (FMV) machine learning methods support vector (SVM), classification regression trees (CART), convolutional neural network (CNN). Firstly, geospatial database was prepared comprising nine conditioning factors, 485 locations, non-flood locations. Then, train test models. Subsequently, receiver operating characteristic (ROC) curve, seed cell area index (SCAI), accuracy evaluate performances The results reveal following: (1) ROC curve highlights fact that CNN-FMV had best fitting performance, under (AUC) values success rate 0.935 0.912, respectively. (2) Based on performance evaluation methods, all better capabilities than their respective single Compared with models, AUC SVM-FMV, CART-FMV, 0.032, 0.005, 0.055 higher; SCAI 0.05, 0.03, 0.02 lower; accuracies 4.48%, 1.38%, 5.86% higher, (3) indices, between 13.21% 22.03% study characterized by high very susceptibilities. proposed especially CNN-FMV, have potential application assessment specific areas future studies.

Язык: Английский

Процитировано

59

Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm DOI

Mahfuzur Rahman,

Ningsheng Chen, Md Monirul Islam

и другие.

Journal of Cleaner Production, Год журнала: 2021, Номер 311, С. 127594 - 127594

Опубликована: Май 27, 2021

Язык: Английский

Процитировано

58

Flood susceptibility modeling based on new hybrid intelligence model: Optimization of XGboost model using GA metaheuristic algorithm DOI

Nguyễn Thị Thùy Linh,

Manish Pandey, Saeid Janizadeh

и другие.

Advances in Space Research, Год журнала: 2022, Номер 69(9), С. 3301 - 3318

Опубликована: Фев. 22, 2022

Язык: Английский

Процитировано

57

Assessment of groundwater potential modeling using support vector machine optimization based on Bayesian multi-objective hyperparameter algorithm DOI

Duong Tran Anh,

Manish Pandey, Varun Narayan Mishra

и другие.

Applied Soft Computing, Год журнала: 2022, Номер 132, С. 109848 - 109848

Опубликована: Ноя. 25, 2022

Язык: Английский

Процитировано

52

Enhanced LSTM Model for Daily Runoff Prediction in the Upper Huai River Basin, China DOI Creative Commons

Yuanyuan Man,

Qinli Yang, Junming Shao

и другие.

Engineering, Год журнала: 2022, Номер 24, С. 229 - 238

Опубликована: Апрель 28, 2022

Runoff prediction is of great significance to flood defense. However, due the complexity and randomness runoff process, it hard predict daily accurately, especially for peak runoff. To address this issue, study proposes an enhanced long short-term memory (LSTM) model prediction, where novel loss functions are introduced feature extractors integrated. Two (peak error tanh (PET), swish (PES)) designed strengthen importance runoff's while weakening weight normal prediction. The extractor consisting three LSTM networks established each meteorological station, aiming extract temporal features input data at station. Taking upper Huai River Basin in China as a case study, from 1960–2016 predicted using model. Results indicate that performed well, achieving Nash–Sutcliffe efficiency (NSE) coefficient ranging 0.917–0.924 during validation period (November 2005–December 2016), outperforming widely used lumped hydrological models (Australian Water Balance Model (AWBM), Sacramento, SimHyd Tank Model) data-driven (artificial neural network (ANN), support vector regression (SVR), gated recurrent units (GRU)). with PES function best on extreme mean NSE floods 0.873. In addition, precipitation station higher altitude contributes more than closest stations. This provides effective tool which will benefit basin's defense water security management.

Язык: Английский

Процитировано

48

Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR DOI
Pratyush Tripathy, Teja Malladi

Natural Hazards, Год журнала: 2022, Номер 114(2), С. 1341 - 1363

Опубликована: Июнь 21, 2022

Язык: Английский

Процитировано

45