Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2022, Номер 127, С. 103198 - 103198
Опубликована: Июль 11, 2022
Язык: Английский
Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2022, Номер 127, С. 103198 - 103198
Опубликована: Июль 11, 2022
Язык: Английский
Soft Computing, Год журнала: 2021, Номер 25(14), С. 9325 - 9346
Опубликована: Май 26, 2021
Язык: Английский
Процитировано
105Journal of Environmental Management, Год журнала: 2021, Номер 295, С. 113086 - 113086
Опубликована: Июнь 18, 2021
Язык: Английский
Процитировано
90Applied Soft Computing, Год журнала: 2021, Номер 105, С. 107282 - 107282
Опубликована: Март 18, 2021
Язык: Английский
Процитировано
85Environmental Earth Sciences, Год журнала: 2021, Номер 80(24)
Опубликована: Ноя. 27, 2021
Язык: Английский
Процитировано
66Remote Sensing, Год журнала: 2021, Номер 13(23), С. 4945 - 4945
Опубликована: Дек. 5, 2021
Flash floods are considered to be one of the most destructive natural hazards, and they difficult accurately model predict. In this study, three hybrid models were proposed, evaluated, used for flood susceptibility prediction in Dadu River Basin. These integrate a bivariate statistical method fuzzy membership value (FMV) machine learning methods support vector (SVM), classification regression trees (CART), convolutional neural network (CNN). Firstly, geospatial database was prepared comprising nine conditioning factors, 485 locations, non-flood locations. Then, train test models. Subsequently, receiver operating characteristic (ROC) curve, seed cell area index (SCAI), accuracy evaluate performances The results reveal following: (1) ROC curve highlights fact that CNN-FMV had best fitting performance, under (AUC) values success rate 0.935 0.912, respectively. (2) Based on performance evaluation methods, all better capabilities than their respective single Compared with models, AUC SVM-FMV, CART-FMV, 0.032, 0.005, 0.055 higher; SCAI 0.05, 0.03, 0.02 lower; accuracies 4.48%, 1.38%, 5.86% higher, (3) indices, between 13.21% 22.03% study characterized by high very susceptibilities. proposed especially CNN-FMV, have potential application assessment specific areas future studies.
Язык: Английский
Процитировано
59Journal of Cleaner Production, Год журнала: 2021, Номер 311, С. 127594 - 127594
Опубликована: Май 27, 2021
Язык: Английский
Процитировано
58Advances in Space Research, Год журнала: 2022, Номер 69(9), С. 3301 - 3318
Опубликована: Фев. 22, 2022
Язык: Английский
Процитировано
57Applied Soft Computing, Год журнала: 2022, Номер 132, С. 109848 - 109848
Опубликована: Ноя. 25, 2022
Язык: Английский
Процитировано
52Engineering, Год журнала: 2022, Номер 24, С. 229 - 238
Опубликована: Апрель 28, 2022
Runoff prediction is of great significance to flood defense. However, due the complexity and randomness runoff process, it hard predict daily accurately, especially for peak runoff. To address this issue, study proposes an enhanced long short-term memory (LSTM) model prediction, where novel loss functions are introduced feature extractors integrated. Two (peak error tanh (PET), swish (PES)) designed strengthen importance runoff's while weakening weight normal prediction. The extractor consisting three LSTM networks established each meteorological station, aiming extract temporal features input data at station. Taking upper Huai River Basin in China as a case study, from 1960–2016 predicted using model. Results indicate that performed well, achieving Nash–Sutcliffe efficiency (NSE) coefficient ranging 0.917–0.924 during validation period (November 2005–December 2016), outperforming widely used lumped hydrological models (Australian Water Balance Model (AWBM), Sacramento, SimHyd Tank Model) data-driven (artificial neural network (ANN), support vector regression (SVR), gated recurrent units (GRU)). with PES function best on extreme mean NSE floods 0.873. In addition, precipitation station higher altitude contributes more than closest stations. This provides effective tool which will benefit basin's defense water security management.
Язык: Английский
Процитировано
48Natural Hazards, Год журнала: 2022, Номер 114(2), С. 1341 - 1363
Опубликована: Июнь 21, 2022
Язык: Английский
Процитировано
45