Safety Science, Год журнала: 2023, Номер 171, С. 106381 - 106381
Опубликована: Ноя. 27, 2023
Язык: Английский
Safety Science, Год журнала: 2023, Номер 171, С. 106381 - 106381
Опубликована: Ноя. 27, 2023
Язык: Английский
Eco-Environment & Health, Год журнала: 2022, Номер 1(2), С. 107 - 116
Опубликована: Июнь 1, 2022
With the rapid increase in volume of data on aquatic environment, machine learning has become an important tool for analysis, classification, and prediction. Unlike traditional models used water-related research, data-driven based can efficiently solve more complex nonlinear problems. In water environment conclusions derived from have been applied to construction, monitoring, simulation, evaluation, optimization various treatment management systems. Additionally, provide solutions pollution control, quality improvement, watershed ecosystem security management. this review, we describe cases which algorithms evaluate different environments, such as surface water, groundwater, drinking sewage, seawater. Furthermore, propose possible future applications approaches environments.
Язык: Английский
Процитировано
381Bioresource Technology, Год журнала: 2022, Номер 369, С. 128486 - 128486
Опубликована: Дек. 14, 2022
Язык: Английский
Процитировано
103Bioresource Technology Reports, Год журнала: 2022, Номер 17, С. 100976 - 100976
Опубликована: Фев. 1, 2022
Язык: Английский
Процитировано
86Catalysts, Год журнала: 2022, Номер 12(8), С. 817 - 817
Опубликована: Июль 26, 2022
Nowadays, biochar is being studied to a great degree because of its potential for carbon sequestration, soil improvement, climate change mitigation, catalysis, wastewater treatment, energy storage, and waste management. The present review emphasizes on the utilization biochar-based nanocomposites play key role in decontaminating dyes from wastewater. Numerous trials are underway synthesize functionalized, surface engineered that can sufficiently remove dye-contaminated removal via natural modified follows numerous mechanisms such as precipitation, complexation, ion exchange, cation–π interactions, electrostatic attraction. Further, production modification promote good adsorption capacity dye owing properties tailored stage linked with specific hydrophobic interactions. Meanwhile, framework artificial neural networking machine learning model efficiency proposed even though studies still their infancy stage. article recommends smart technologies modelling forecasting should be included proper applications.
Язык: Английский
Процитировано
78Applied Sciences, Год журнала: 2023, Номер 13(22), С. 12147 - 12147
Опубликована: Ноя. 8, 2023
This paper offers a comprehensive overview of machine learning (ML) methodologies and algorithms, highlighting their practical applications in the critical domain water resource management. Environmental issues, such as climate change ecosystem destruction, pose significant threats to humanity planet. Addressing these challenges necessitates sustainable management increased efficiency. Artificial intelligence (AI) ML technologies present promising solutions this regard. By harnessing AI ML, we can collect analyze vast amounts data from diverse sources, remote sensing, smart sensors, social media. enables real-time monitoring decision making applications, including irrigation optimization, quality monitoring, flood forecasting, demand enhance agricultural practices, distribution models, desalination plants. Furthermore, facilitates integration, supports decision-making processes, enhances overall sustainability. However, wider adoption faces challenges, heterogeneity, stakeholder education, high costs. To provide an management, research focuses on core fundamentals, major (prediction, clustering, reinforcement learning), ongoing issues offer new insights. More specifically, after in-depth illustration algorithmic taxonomy, comparative mapping all specific tasks. At same time, include tabulation works along with some concrete, yet compact, descriptions objectives at hand. leveraging tools, develop plans address world’s supply concerns effectively.
Язык: Английский
Процитировано
50Chemical Engineering Journal, Год журнала: 2023, Номер 471, С. 144503 - 144503
Опубликована: Июль 1, 2023
Язык: Английский
Процитировано
42RSC Advances, Год журнала: 2024, Номер 14(13), С. 9003 - 9019
Опубликована: Янв. 1, 2024
The waste management industry uses an increasing number of mathematical prediction models to accurately forecast the behavior organic pollutants during catalytic degradation.
Язык: Английский
Процитировано
19Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(2), С. 112353 - 112353
Опубликована: Фев. 27, 2024
Язык: Английский
Процитировано
16Coordination Chemistry Reviews, Год журнала: 2025, Номер 529, С. 216460 - 216460
Опубликована: Янв. 24, 2025
Язык: Английский
Процитировано
2Journal of Cleaner Production, Год журнала: 2022, Номер 385, С. 135522 - 135522
Опубликована: Дек. 15, 2022
Язык: Английский
Процитировано
65