Spatiotemporal Variation and Driving Factors of Ecological Environment Quality on the Loess Plateau in China from 2000 to 2020 DOI Creative Commons

Shuaizhi Kang,

Xia Jia,

Yonghua Zhao

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(24), С. 4778 - 4778

Опубликована: Дек. 21, 2024

The Loess Plateau (LP) in China is an ecologically fragile region that has long faced challenges such as soil erosion, water shortages, and land degradation. spatial temporal variations ecological environment quality on the LP from 2000 to 2020 were analyzed using Remote Sensing Ecological Index (RSEI) Google Earth Engine (GEE) platform. Sen, Mann–Kendall, Hurst exponent analyses used examine variation trends over past 20 years, while Geodetector identified key factors influencing RSEI changes their interactions. results indicate (1) effectively represents environmental of LP, with 47% study area’s annual mean values 20-year period classified moderate, ranging 0.017 0.815. (2) showed improvement 72% area, a 90% overall increase, but 84% these are not likely continue. (3) Key during abrupt change years included precipitation, use/land cover, sediment content, precipitation topography emerging primary influences quality. Although natural largely drive changes, human activities also exert both positive negative effects. This underscores importance sustainable management provides policy insights for advancing civilization contributing achievement Sustainable Development Goals (SDGs).

Язык: Английский

Coupling coordination analysis of resources, economy, and ecology in the Yellow River Basin DOI Creative Commons

Guanhang Sui,

Huixiao Wang, Siyang Cai

и другие.

Ecological Indicators, Год журнала: 2023, Номер 156, С. 111133 - 111133

Опубликована: Окт. 27, 2023

The development of the Yellow River Basin (YRB) has been constrained by resource utilization, ecological conservation, and economic growth. aim this study was to establish a theoretical framework for characterizing relationships among resources, economy, ecology in YRB using panel data remote sensing from nine provinces basin 2002 2022. Furthermore, coupling coordination degree model geographical detector were used evaluate spatiotemporal relevant factors. Our findings manifold. (1) its improved varying degrees, with upstream showing stronger than midstream downstream provinces. (2) most significant growth rates observed during 2002–2006 2014–2018. However, noticeable decline occurred 2006–2010, indicating that constraints negative effects pronounced when not apparent. (3) average 2022 0.684. Excellent Shandong Province Henan Province, good Shaanxi Shanxi Province. (4) In initial part period, water supply, demand, allocation had strong on degree. Over time, focus shifted single system multiple systems, which increased similarity explanatory power different Additionally, an in-depth analysis factors conducted characterize policy orientations periods YRB. Policy recommendations provided basis natural conditions socio-economic have implications high-quality Generally, our results provide key insights will aid coordinated sustainable regional development.

Язык: Английский

Процитировано

31

Spatial-temporal changes and driving factors of eco-environmental quality in the Three-North region of China DOI
Yi Long, Fugen Jiang,

Muli Deng

и другие.

Journal of Arid Land, Год журнала: 2023, Номер 15(3), С. 231 - 252

Опубликована: Фев. 21, 2023

Язык: Английский

Процитировано

29

Detection of spatiotemporal changes in ecological quality in the Chinese mainland: Trends and attributes DOI
Yang Li, Haifeng Tian, Jingfei Zhang

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 884, С. 163791 - 163791

Опубликована: Май 2, 2023

Язык: Английский

Процитировано

29

Spatiotemporal change and driving factors of ecological status in Inner Mongolia based on the modified remote sensing ecological index DOI

Bai Zongfan,

Ling Han,

Liu Huiqun

и другие.

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(18), С. 52593 - 52608

Опубликована: Фев. 25, 2023

Язык: Английский

Процитировано

23

The Dynamic Monitoring and Driving Forces Analysis of Ecological Environment Quality in the Tibetan Plateau Based on the Google Earth Engine DOI Creative Commons
Muhadaisi Airiken, Shuangcheng Li

Remote Sensing, Год журнала: 2024, Номер 16(4), С. 682 - 682

Опубликована: Фев. 14, 2024

As a region susceptible to the impacts of climate change, evaluating temporal and spatial variations in ecological environment quality (EEQ) potential influencing factors is crucial for ensuring security Tibetan Plateau. This study utilized Google Earth Engine (GEE) platform construct Remote Sensing-based Ecological Index (RSEI) examined dynamics Plateau’s EEQ from 2000 2022. The findings revealed that RSEI Plateau predominantly exhibited slight degradation trend 2022, with multi-year average 0.404. Utilizing SHAP (Shapley Additive Explanation) interpret XGBoost (eXtreme Gradient Boosting), identified natural as primary influencers on Plateau, temperature, soil moisture, precipitation variables exhibiting higher values, indicating their substantial contributions. interaction between temperature showed positive effect RSEI, value increasing rising precipitation. methodology results this could provide insights comprehensive understanding monitoring dynamic evolution amidst context change.

Язык: Английский

Процитировано

16

Application of a novel remote sensing ecological index (RSEI) based on geographically weighted principal component analysis for assessing the land surface ecological quality DOI
Jayanta Mondal, Tirthankar Basu, Arijit Das

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(22), С. 32350 - 32370

Опубликована: Апрель 23, 2024

Язык: Английский

Процитировано

15

The impact of land-use change on the ecological environment quality from the perspective of production-living-ecological space: A case study of the northern slope of Tianshan Mountains DOI Creative Commons
Yu Cao, Mingyu Zhang, Zhengyong Zhang

и другие.

Ecological Informatics, Год журнала: 2024, Номер 83, С. 102795 - 102795

Опубликована: Авг. 25, 2024

Язык: Английский

Процитировано

13

Ecological assessment and driver analysis of high vegetation cover areas based on new remote sensing index DOI Creative Commons
Xiaoyong Zhang, Weiwei Jia,

Shixin Lu

и другие.

Ecological Informatics, Год журнала: 2024, Номер 82, С. 102786 - 102786

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

11

Constructing cropland ecological stability assessment method based on disturbance-resistance-response processes and classifying cropland ecological types DOI
Haoran Gao, Jian Gong,

Teng Ye

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 930, С. 172673 - 172673

Опубликована: Апрель 25, 2024

Язык: Английский

Процитировано

10

Land use and RSEI spatial-temporal changes in Horqin Sandland (Inner Mongolia, China) DOI
Z. Wang, Yang Yu, Yiben Cheng

и другие.

Deleted Journal, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1