International Journal of River Basin Management, Год журнала: 2025, Номер unknown, С. 1 - 14
Опубликована: Янв. 29, 2025
Язык: Английский
International Journal of River Basin Management, Год журнала: 2025, Номер unknown, С. 1 - 14
Опубликована: Янв. 29, 2025
Язык: Английский
International Journal of Disaster Risk Reduction, Год журнала: 2022, Номер 74, С. 102955 - 102955
Опубликована: Апрель 8, 2022
Язык: Английский
Процитировано
63Environmental Modelling & Software, Год журнала: 2023, Номер 163, С. 105670 - 105670
Опубликована: Март 7, 2023
Язык: Английский
Процитировано
33The Science of The Total Environment, Год журнала: 2023, Номер 904, С. 166891 - 166891
Опубликована: Сен. 6, 2023
As one of the most destructive nature hazards, hurricane-induced flooding generates serious adverse impacts on populations, infrastructure, and environment globally. In urban areas, complex characteristics such as high population infrastructure densities increase flood disaster risks. Consequently, assessment risks is becoming increasingly important for understanding potential an area proposing risk mitigation strategies. After conducting a comprehensive literature review, this study finds that assessments often overlook ecosystem elements, focusing more social economic aspects. Hence, role ecosystems cannot be fully understood. To address gap, proposes social-ecological systems (SES) framework areas. Based framework, list indicators collected through review provided assessments. A comparative during Hurricane Harvey (2017) in Houston, Texas, USA, carried out using improved analytic hierarchy process (IAHP) weighting method equal indicator weighting. Results are then compared with damage data published by U.S. Federal Emergency Management Agency (FEMA). The analysis identifies western part Houston had highest risks, while center was at lower risk. Comparisons between results from IAHP methods show latter produces broader range areas than former. This also highlights mitigating advocates holistic, Such could utilize proposed but contextualize these to specific area's contexts being investigated.
Язык: Английский
Процитировано
26International Journal of River Basin Management, Год журнала: 2024, Номер unknown, С. 1 - 18
Опубликована: Фев. 13, 2024
Given the growing climate variability, quantifying droughts has gained significant importance, particularly in agriculturally concentrated areas such as Iowa. This study presents a novel approach for evaluating risk of agricultural drought, which combines geospatial methods with fuzzy logic algorithm. The integrates diverse array meteorological, physical, and social factors, yielding more comprehensive nuanced understanding impacts drought. covered sector within Corn Belt region Iowa formulated maps illustrating vulnerability drought timeframe spanning from 2015 to 2021. illustrate progress analysis, fully representing spatial temporal dimensions uniqueness this is ascribed its methodological framework, thorough assessment prior research inform assignment weights parameters logic-based index. findings demonstrate notable increase proportion Iowa's land area classified at a'very high' risk, rising 0.66% 5.39% 2018. upward trend suggests an escalating susceptibility conditions. Mid-Iowa western portion state exhibited increased 'high' 'extremely threats during period. accuracy our was validated using Kappa coefficient 75%. indicator potential be utilized context mitigation program monitoring. Moreover, methodology can modified implementation geographical across globe.
Язык: Английский
Процитировано
11Atmospheric Research, Год журнала: 2024, Номер 309, С. 107553 - 107553
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
11Journal of Hydroinformatics, Год журнала: 2024, Номер 26(3), С. 589 - 607
Опубликована: Март 1, 2024
Abstract The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, nowcasting been studied utilizing NASA Giovanni satellite-derived precipitation products the convolutional long short-term memory (ConvLSTM) approach. goal study is assess impact data augmentation on flood nowcasting. Due requirements deep learning-based methods, performed using eight different interpolation techniques. Spatial, temporal, spatio-temporal interpolated are used conduct a comparative analysis results obtained through rainfall. This research examines two catastrophic that transpired in Türkiye Marmara Region 2009 Central Black Sea 2021, which selected as focal case studies. regions prone frequent flooding, which, dense population, devastating consequences. Furthermore, these exhibit distinct topographical characteristics patterns, frontal systems them also dissimilar. nowcast for significant difference. Although significantly reduced error values by 59% one region, it did not yield same effectiveness other region.
Язык: Английский
Процитировано
9Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106418 - 106418
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1The Science of The Total Environment, Год журнала: 2023, Номер 901, С. 165761 - 165761
Опубликована: Июль 28, 2023
Язык: Английский
Процитировано
22The Science of The Total Environment, Год журнала: 2023, Номер 908, С. 168346 - 168346
Опубликована: Ноя. 6, 2023
Язык: Английский
Процитировано
20International Journal of Disaster Risk Reduction, Год журнала: 2023, Номер 100, С. 104208 - 104208
Опубликована: Дек. 20, 2023
Язык: Английский
Процитировано
20