Global evaluation of NOAA-20 VIIRS dark target aerosol products over land and ocean DOI
Pei Xin, Leiku Yang,

Weiqian Ji

и другие.

Atmospheric Environment, Год журнала: 2024, Номер unknown, С. 120949 - 120949

Опубликована: Ноя. 1, 2024

Язык: Английский

Assessment and characteristics of S-NPP VIIRS Deep Blue and Dark Target aerosol properties under clean, polluted and fire scenarios over the Amazon DOI
Vanúcia Schumacher, Alberto Setzer

Atmospheric Environment, Год журнала: 2024, Номер 323, С. 120398 - 120398

Опубликована: Фев. 12, 2024

Язык: Английский

Процитировано

2

Validation and Comparison of Long-Term Accuracy and Stability of Global Reanalysis and Satellite Retrieval AOD DOI Creative Commons
Xin Su,

Huang Ge,

Lin Wang

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(17), С. 3304 - 3304

Опубликована: Сен. 5, 2024

Reanalysis and satellite retrieval are two primary approaches for obtaining large-scale long-term Aerosol Optical Depth (AOD) datasets. This study evaluates compares the accuracy, stability, error characteristics of MERRA-2, MODIS combined Dark Target Deep Blue (DT&DB), VIIRS DB AOD products globally regionally. The results indicate that MERRA-2 exhibits highest accuracy with an expected (EE, ±0.05 ± 20%) 83.24% mean absolute (MAE) 0.056, maintaining a stability 0.010 per decade. However, since ceased assimilating observations other than in 2014, its decreased by approximately 5.6% EE metric after 2014. (DB) product, 79.43% 0.016 decade, is slightly less accurate stable compared to AOD. DT&DB demonstrates 76.75% 0.011 Regionally, performs acceptably most areas, especially low-aerosol-loading regions, > 86% ~0.02 excels high-aerosol-loading such as Indian subcontinent, 69.14% 0.049 performance falls between across regions. Overall, each product meets metrics globally, but users need select appropriate analysis based on validation different

Язык: Английский

Процитировано

2

Spatio-temporal variations of aerosol optical depth over Ukraine under the Russia-Ukraine war DOI
Jiadan Dong, Liqiao Tian, Fang Chen

и другие.

Atmospheric Environment, Год журнала: 2023, Номер 314, С. 120114 - 120114

Опубликована: Окт. 2, 2023

Язык: Английский

Процитировано

4

Comparisons of aerosol types and optical characters over Shouxian Area China observed from ground- and space-based systems DOI Creative Commons

Xu Deng,

Chenbo Xie, Dong Liu

и другие.

Optics Express, Год журнала: 2024, Номер 32(16), С. 27081 - 27081

Опубликована: Июнь 14, 2024

This study evaluates the performance of moderate-resolution Imaging spectroradiometer (MODIS) in aerosol optical depth(AOD) and Ångström exponent(AE) retrievals under high loading conditions across various types, utilizing ground-based space-borne measurements Shouxian, China. The intercomparison reveals cloud-aerosol LiDAR with orthogonal polarization's (CALIOP) efficacy detecting significant layers refinement sunphotometer-based type classification through CALIPSO, achieving approximately 80% accuracy. Analysis 2016-2017 data indicates substantial presence monthly mean AODs ranging from 0.35 to 0.72 at 550 nm, significantly above global average. predominant types were mixed-type (54.8%), desert dust (21.2%), urban/industrial(15.5%), biomass-burning (6.4%), continental (12.1%), frequent observations elevated long-range transported layers. MODIS AOD generally align sunphotometer but exhibit higher biases, especially increasing magnitudes. However, there is a notable difference between AE measurements, accurately assessing BBA showing varied other types. combination DD most accurate. Further analysis showed that biases are negatively correlated, these negative bias correlations show strong sensitivities. Monthly comparisons highlights varying performance, particularly during normalized vegetation index (NDVI) transitions, suggesting local cycles associated surface spectral reflectance changes impact retrieval accuracy conditions.

Язык: Английский

Процитировано

0

Are the cloud-top heights retrieved from GOES-16/ABI and GOES-17/ABI consistent? DOI
Yan Dong, Shijun Zhao,

Sun Xuejin

и другие.

IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2024, Номер 62, С. 1 - 9

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

An Adaptive Dark-Target Algorithm for Retrieving Land AOD Applied to FY-4B/AGRI Data DOI Creative Commons
Yidan Si,

Ling Gao,

Lin Chen

и другие.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Год журнала: 2024, Номер 17, С. 14035 - 14049

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Trends and classification of aerosol observed from MODIS sensor over Northern Europe and the Arctic DOI
Kyung Man Han,

Chang Hoon Jung,

Chul H. Song

и другие.

Atmospheric Pollution Research, Год журнала: 2024, Номер unknown, С. 102329 - 102329

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

0

Applying the Dark Target Aerosol Algorithm to MERSI-II: Retrieval and Validation of Aerosol Optical Depth over the Ocean DOI
Pei Xin, Leiku Yang,

Weiqian Ji

и другие.

Advances in Atmospheric Sciences, Год журнала: 2024, Номер 41(12), С. 2446 - 2463

Опубликована: Окт. 28, 2024

Язык: Английский

Процитировано

0

Global evaluation of NOAA-20 VIIRS dark target aerosol products over land and ocean DOI
Pei Xin, Leiku Yang,

Weiqian Ji

и другие.

Atmospheric Environment, Год журнала: 2024, Номер unknown, С. 120949 - 120949

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0