
Environmental Pollution, Год журнала: 2024, Номер unknown, С. 125434 - 125434
Опубликована: Ноя. 1, 2024
Язык: Английский
Environmental Pollution, Год журнала: 2024, Номер unknown, С. 125434 - 125434
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Water Process Engineering, Год журнала: 2025, Номер 74, С. 107876 - 107876
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2025, Номер 982, С. 179573 - 179573
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0Powder Technology, Год журнала: 2024, Номер 446, С. 120120 - 120120
Опубликована: Авг. 2, 2024
Язык: Английский
Процитировано
2Journal of Cleaner Production, Год журнала: 2024, Номер 472, С. 143513 - 143513
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
2Journal of Water Process Engineering, Год журнала: 2024, Номер 68, С. 106313 - 106313
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
2Journal of Water Process Engineering, Год журнала: 2023, Номер 56, С. 104501 - 104501
Опубликована: Ноя. 4, 2023
Язык: Английский
Процитировано
6Journal of Water Process Engineering, Год журнала: 2024, Номер 64, С. 105680 - 105680
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
1Journal of Hydrology, Год журнала: 2024, Номер 641, С. 131720 - 131720
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Авг. 21, 2024
Accurate and rapid prediction of water quality is crucial for the protection aquatic ecosystems. This study aims to enhance total phosphorus (TP) concentrations in middle reaches Yangtze River by integrating advanced modeling techniques. Using operational discharge data from Three Gorges Reservoir (TGR), along with parameters downstream sections, we used Grey Relational Analysis (GRA) rank factors contributing TP concentrations. The analysis identified turbidity, permanganate index (CODMn), nitrogen (TN), temperature, chlorophyll a, upstream level variation, Dam (TGD) as top contributors. Subsequently, a coupled neural network model was established, incorporating these key contributors, predict under dynamic control during flood periods TGR. proposed GRA-CEEMDAN-CN1D-LSTM-DBO compared conventional models, including BP, LSTM, GRU. results indicated that significantly outperformed others, achieving correlation coefficient (R) 0.784 root mean square error (RMSE) 0.004, 0.58 0.007 LSTM model, 0.576 BP 0.623 0.006 GRU model. model's accuracy applicability further validated two sections: YC (Yunchi) Yichang City LK (Liukou) Jingzhou City, where it performed satisfactorily predicting (R = 0.776, RMSE 0.007) 0.718, 0.007). Additionally, deep learning revealed distance away dam increased, gradually decreased, indicating reduced impact TGR operations on In conclusion, demonstrates superior performance concentration River, offering valuable insights seasons smart advancement management River.
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Окт. 29, 2024
The Water Quality Index (WQI) is widely used as a classification indicator and essential parameter for water resources management projects. WQI combines several physical chemical parameters into single metric to measure the status of Quality. This study explores application five soft computing techniques, including Gene Expression Programming, Gaussian Process, Reduced Error Pruning Tree (REPt), Artificial Neural Network with FireFly (ANN-FFA), combinations bagging. These models aim predict Khorramabad, Biranshahr, Alashtar sub-watersheds in Lorestan province, Iran. dataset consists 124 observations, input variables being sulfate (SO
Язык: Английский
Процитировано
1