Reconstructed Global Total Water Storage Products (1923-2022): Insights and Challenges in Humid and Arid Regions DOI Open Access
Jielong Wang, Yunzhong Shen, Joseph L. Awange

и другие.

Authorea (Authorea), Год журнала: 2024, Номер unknown

Опубликована: Март 15, 2024

 A deep learning model for reconstructing global climate-driven total water storage changes is presented 1923-2022. Our reconstruction exhibits superior consistency with GRACE observations compared to GRACE-REC. The reconstructed datasets reveal relative reliability and challenges in humid arid regions.

Язык: Английский

A novel generative adversarial network and downscaling scheme for GRACE/GRACE-FO products: Exemplified by the Yangtze and Nile River Basins DOI
Jielong Wang, Yunzhong Shen, Joseph L. Awange

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 969, С. 178874 - 178874

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

1

Long short-term memory exploitation of satellite gravimetry to infer floods DOI Creative Commons
Omid Memarian Sorkhabi, Joseph L. Awange

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 139, С. 104562 - 104562

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Reconstructing Total Water Storage Anomalies Over the Lake Victoria Basin (1971–2022) Using an Enhanced RecNet Model DOI Creative Commons
Jielong Wang, Yunzhong Shen, Joseph L. Awange

и другие.

Geophysical Research Letters, Год журнала: 2025, Номер 52(9)

Опубликована: Май 2, 2025

Abstract Relatively short records of Total Water Storage Anomalies (TWSA) from the Gravity Recovery and Climate Experiment (GRACE) its Follow‐On (GRACE‐FO) missions have impeded our understanding their full range long‐term variability over Lake Victoria Basin (LVB). This study introduces an Enhanced RecNet (ERecNet) to reconstruct LVB's TWSA 1971 2022 using precipitation Victoria's level data. ERecNet integrates a multi‐layer perceptron combination gridded basin‐averaged loss functions for improving reconstruction performance. Our results reveal that can successfully variations, outperforming hydrological models reanalysis products in capturing trends amplitudes. The aligns closely with lake patterns while effectively closing water balance budget. provides first both human‐ climate‐driven data LVB, offering valuable insights into variability.

Язык: Английский

Процитировано

0

Reconstructed centennial precipitation-driven water storage anomalies in the Nile River Basin using RecNet and their suitability for studying ENSO and IOD impacts DOI
Jielong Wang, Joseph L. Awange, Yunzhong Shen

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 645, С. 132272 - 132272

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

2

The Impact of Climate Change on Groundwater and Crop Yield in Asia: A Comprehensive Review DOI Open Access

Anandhi Santhosh,

S. Prabhakaran,

V. Davamani

и другие.

Опубликована: Дек. 25, 2023

The effect of climate change plays a significant role on groundwater level variations and crop yield. in leading to increased temperatures, decreased rainfalls extreme drought conditions ultimately cause low Judicious management technology viz., water recharge options, need based irrigation, selection, must be adapted for further increasing the table soil ecosystem. Additionally, impacts combined with changes agricultural use can affect dynamics. Increased irrigation demand summer precipitation lower levels, impacting production. Overall, affects both resources yield highlighting sustainable practices consideration properties modelling. authors carefully selected relevant research articles addressing impact ground Asian countries. review highlights machine learning method According study, techniques have made contributions predicting higher accuracies, high performance less running time.

Язык: Английский

Процитировано

1

Reconstructed Global Total Water Storage Products (1923-2022): Insights and Challenges in Humid and Arid Regions DOI Open Access
Jielong Wang, Yunzhong Shen, Joseph L. Awange

и другие.

Authorea (Authorea), Год журнала: 2024, Номер unknown

Опубликована: Март 15, 2024

 A deep learning model for reconstructing global climate-driven total water storage changes is presented 1923-2022. Our reconstruction exhibits superior consistency with GRACE observations compared to GRACE-REC. The reconstructed datasets reveal relative reliability and challenges in humid arid regions.

Язык: Английский

Процитировано

0