Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Сен. 28, 2024
Язык: Английский
Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Сен. 28, 2024
Язык: Английский
Marine Environmental Research, Год журнала: 2025, Номер 209, С. 107170 - 107170
Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер 85, С. 102944 - 102944
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
3Environmental Modelling & Software, Год журнала: 2025, Номер 188, С. 106412 - 106412
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
0Ocean & Coastal Management, Год журнала: 2025, Номер 265, С. 107628 - 107628
Опубликована: Март 22, 2025
Язык: Английский
Процитировано
0Journal of Environmental Management, Год журнала: 2025, Номер 382, С. 125406 - 125406
Опубликована: Апрель 18, 2025
Язык: Английский
Процитировано
0Lecture notes in civil engineering, Год журнала: 2025, Номер unknown, С. 361 - 376
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер 82, С. 102695 - 102695
Опубликована: Июнь 20, 2024
Accurate and efficient long-term prediction of marine dissolved oxygen (DO) is crucial for the sustainable development aquaculture. However, multidimensional time dependency lag effects chemical variables present significant challenges when handling multiple inputs in univariate tasks. To address these issues, we designed a multivariate time-series model (LMFormer) based on Transformer architecture. The proposed decomposition strategy effectively leverages feature information at different scales, thereby reducing loss critical information. Additionally, dynamic variable selection gating mechanism was to optimize collinearity problem data extraction process. Finally, an two-stage attention architecture capture long-range dependencies between features. This study conducted high-precision 7-day advance DO predictions two case studies, environmentally stable Shandong Peninsula China San Juan Islands United States, which are affected by extreme conditions such as ocean currents. experimental results demonstrate superior performance generalizability model. In case, mean absolute error (MAE), root square (RMSE), coefficient determination (R2), Kling–Gupta efficiency (KGE) reached 0.0159, 0.126, 0.9743, 0.9625, respectively. MAE reduced average 42.34% compared that baseline model, RMSE 24.57%, R2 increased 22.54%, KGE improved 12.04%. Overall, achieves data, providing valuable references management decision-making
Язык: Английский
Процитировано
3Marine Pollution Bulletin, Год журнала: 2024, Номер 208, С. 117028 - 117028
Опубликована: Окт. 3, 2024
Язык: Английский
Процитировано
2Marine Environmental Research, Год журнала: 2024, Номер 199, С. 106613 - 106613
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
1Water, Год журнала: 2024, Номер 17(1), С. 12 - 12
Опубликована: Дек. 24, 2024
The accurate prediction of total phosphorus (TP) is crucial for the early detection water quality eutrophication. However, predicting TP concentrations among canal sites challenging due to their complex spatiotemporal dependencies. To address this issue, study proposes a GAT-Informer method based on correlations predict in Beijing–Hangzhou Grand Canal Basin Changzhou City. begins by creating feature sequences each site time lag relationship concentration between sites. It then constructs graph data combining real river distance and correlation sequences. Next, spatial features are extracted fusing node using attention (GAT) module. employs Informer network, which uses sparse mechanism extract temporal efficiently simulating model was evaluated R2, MAE, RMSE, with experimental results yielding values 0.9619, 0.1489%, 0.1999%, respectively. exhibits enhanced robustness superior predictive accuracy comparison traditional models.
Язык: Английский
Процитировано
1