Urban heat load assessment in Zagreb, Croatia: a multi-scale analysis using mobile measurement and satellite imagery DOI
Matej Žgela,

Jakov Lozuk,

Patrik Jureša

и другие.

Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(5)

Опубликована: Апрель 2, 2024

Язык: Английский

Assessing Heat Vulnerability and Multidimensional Inequity: Lessons from Indexing the Performance of Australian Capital Cities DOI Creative Commons
Fei Li, Tan Yiğitcanlar, Madhav Prasad Nepal

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 115, С. 105875 - 105875

Опубликована: Окт. 2, 2024

Язык: Английский

Процитировано

12

Demographic disparity in diurnal surface urban Heat Island exposure across local climate zones: A case study of Chongqing, China DOI

Yujia Ming,

Yong Liu, Xue Liu

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 923, С. 171203 - 171203

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

11

Analytical study of land surface temperature for evaluation of UHI and UHS in the city of Chandigarh India DOI
Ajay Kumar Taloor, Gurnam Parsad,

S Jabeen

и другие.

Remote Sensing Applications Society and Environment, Год журнала: 2024, Номер 35, С. 101206 - 101206

Опубликована: Апрель 25, 2024

Язык: Английский

Процитировано

11

Unveiling nonlinear effects of built environment attributes on urban heat resilience using interpretable machine learning DOI

Qing Liu,

Jingyi Wang,

Bowen Bai

и другие.

Urban Climate, Год журнала: 2024, Номер 56, С. 102046 - 102046

Опубликована: Июнь 28, 2024

Язык: Английский

Процитировано

9

Daytime cooling efficiencies of urban trees derived from land surface temperature are much higher than those for air temperature DOI Creative Commons

Meng Du,

Niantan Li,

Ting Hu

и другие.

Environmental Research Letters, Год журнала: 2024, Номер 19(4), С. 044037 - 044037

Опубликована: Март 6, 2024

Abstract Accurately capturing the impact of urban trees on temperature can help optimize heat mitigation strategies. Recently, there has been widespread use remotely sensed land surface ( T s ) to quantify cooling efficiency (CE) trees. However, reflects emitted radiation from an object seen point view thermal sensor, which is not a good proxy for air perceived by humans. The extent CEs derived reflect true experiences residents debatable. Therefore, this study systematically compared -based CE (CE with in 392 European clusters. and were defined as reductions , respectively, every 1% increase fractional tree cover (FTC). results show that FTC substantial reducing most cities during daytime. at night, response increased appears be much weaker ambiguous. On average, cities, daytime reaches 0.075 °C % −1 significantly higher (by order magnitude) than corresponding 0.006 . In contrast, average nighttime are similar, both approximating zero. Overall, lower temperatures, but magnitude their effect notably amplified when using estimates situ measurements, important consider accurately constraining public health benefits. Our findings provide critical insights into realistic efficiencies alleviating through planting.

Язык: Английский

Процитировано

8

Spatial Differentiation in Urban Thermal Environment Pattern from the Perspective of the Local Climate Zoning System: A Case Study of Zhengzhou City, China DOI Creative Commons
Jinghu Pan,

Bo Yu,

Yingbiao Zhi

и другие.

Atmosphere, Год журнала: 2025, Номер 16(1), С. 40 - 40

Опубликована: Янв. 2, 2025

In order to assess the spatial and temporal characteristics of urban thermal environment in Zhengzhou City supplement climate adaptation design work, based on Landsat 8–9 OLI/TIRS C2 L2 data for 12 periods from 2019–2023, combined with lLocal zone (LCZ) classification subsurface classification, this study, we used statistical mono-window (SMW) algorithm invert land surface temperature (LST) classify heat island (UHI) effect, analyze differences distribution environments areas aggregation characteristics, explore influence LCZ landscape pattern temperature. The results show that proportions built natural types Zhengzhou’s main metropolitan area are 79.23% 21.77%, respectively. most common landscapes wide mid-rise (LCZ 5) structures large-ground-floor 8) structures, which make up 21.92% 20.04% study area’s total area, varies seasons, pooling during summer peaking winter, strong or extremely islands centered suburbs a hot cold spots aggregated observable features. As building heights increase, UHI 1–6) increases then reduces spring, summer, autumn decreases winter as increase. Water bodies G) dense woods A) have lowest effects among settings. Building size is no longer primary element affecting LST buildings become taller; instead, connectivity clustering take center stage. Seasonal variations, variations types, responsible area. should see an increase vegetation cover, gaps must be appropriately increased.

Язык: Английский

Процитировано

1

Harnessing Multi-Source Data and Deep Learning for High-Resolution Land Surface Temperature Gap-Filling Supporting Climate Change Adaptation Activities DOI Creative Commons

Katja Kustura,

Daniel J. Conti,

Matthias Sammer

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(2), С. 318 - 318

Опубликована: Янв. 17, 2025

Addressing global warming and adapting to the impacts of climate change is a primary focus adaptation strategies at both European national levels. Land surface temperature (LST) widely used proxy for investigating climate-change-induced phenomena, providing insights into radiative properties different land cover types impact urbanization on local characteristics. Accurate continuous estimation across large spatial regions crucial implementation LST as an essential parameter in mitigation strategies. Here, we propose deep-learning-based methodology using multi-source data including Sentinel-2 imagery, cover, meteorological data. Our approach addresses common challenges satellite-derived data, such gaps caused by cloud image border limitations, grid-pattern sensor artifacts, temporal discontinuities due infrequent overpasses. We develop regression-based convolutional neural network model, trained ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment Space Station) mission which performs pixelwise predictions 5 × patches, capturing contextual information around each pixel. This method not only preserves ECOSTRESS’s native resolution but also fills enhances coverage. In non-gap areas validated against ground truth model achieves with least 80% all pixel errors falling within ±3 °C range. Unlike traditional satellite-based techniques, our leverages high-temporal-resolution capture diurnal variations, allowing more robust time periods. The model’s performance demonstrates potential integrating urban planning, resilience strategies, near-real-time heat stress monitoring, valuable resource assess visualize development use changes.

Язык: Английский

Процитировано

1

Chasing the heat: Unraveling urban hyperlocal air temperature mapping with mobile sensing and machine learning DOI
Yuyang Zhang,

Dingyi Yu,

Huimin Zhao

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 927, С. 172168 - 172168

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

5

Detecting the air-cooling effect of urban green spaces in a hot climate town relative to land surface temperature on Landsat-9 thermal imagery DOI

C. Munyati

Advances in Space Research, Год журнала: 2024, Номер 74(10), С. 4598 - 4615

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

5

A cross-scale indicator framework for the study of annual stability of land surface temperature in different land uses DOI
Shuyang Zhang, Chao Yuan, Taihan Chen

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105936 - 105936

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5