Spatio-Temporal Diversification of per Capita Carbon Emissions in China: 2000–2020 DOI Creative Commons

Xuewei Zhang,

Yi Zeng, Wanxu Chen

и другие.

Land, Год журнала: 2024, Номер 13(9), С. 1421 - 1421

Опубликована: Сен. 3, 2024

Exploring the low-carbon transition in China can offer profound guidance for governments to develop relevant environmental policies and regulations within context of 2060 carbon neutrality target. Previous studies have extensively explored promotion development China, yet no completely explained mechanisms from perspective per capita emissions (PCEs). Based on statistics data 367 prefecture level cities 2000 2020, this study employed markov chain, kernel density analysis, hotspots spatial regression models reveal spatiotemporal distribution patterns, future trends, driving factors PCEs China. The results showed that China’s 2000, 2010, 2020 were 0.72 ton/persons, 1.72 1.91 respectively, exhibiting a continuous upward trend, with evident regional heterogeneity. northern eastern coastal region higher than those southern central southwestern regions. obvious clustering, hot spots mainly concentrated Inner Mongolia Xinjiang, while cold some provinces exhibited strong stability ‘club convergence’ phenomenon. A analysis revealed urbanization latitude had negative effects PCEs, economic level, average elevation, slope, longitude positive PCEs. These findings important implications effective achievement “dual carbon” goal.

Язык: Английский

Urban synergistic carbon emissions reduction research: A perspective on spatial complexity and link prediction DOI
Bin Zhang, Jian Yin, Rui Ding

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122505 - 122505

Опубликована: Сен. 17, 2024

Язык: Английский

Процитировано

4

Multi-objective optimization framework for generative design of horseshoe-shaped pipe arrangement in pre-stressed underground bundles DOI
Wen He, Yue Pan,

Yongmao Hou

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 158, С. 106437 - 106437

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Groundwater Infiltration Inverse Estimation in Urban Sewers Network: A Two-stage Simulation-optimization Model DOI
Zihan Liu, Yexin He, Wenli Liu

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106205 - 106205

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Carbon Emission Accounting Method for Coal-fired Power Units of Different Coal Types under Peak Shaving Conditions DOI
Haoyu Chen, Xi Chen,

Guanwen Zhou

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135314 - 135314

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Distributed cooperative electricity-carbon trading for multi-park integrated energy systems DOI
Xinliang Yu, Yazhi Song, Runjia Sun

и другие.

Sustainable Energy Grids and Networks, Год журнала: 2025, Номер unknown, С. 101683 - 101683

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

High-Resolution Analysis of Temporal Variation and Driving Factors of CO2 Concentration in Nanning City in Spring 2024 DOI Creative Commons

Jiajin Feng,

Xuemei Chen, Huilin Liu

и другие.

Atmosphere, Год журнала: 2025, Номер 16(4), С. 449 - 449

Опубликована: Апрель 12, 2025

In this study, based on high-resolution online monitoring data of CO2 concentration in Nanning City the spring 2024, we analyzed characteristics diurnal and monthly changes explored influencing factors through background sieving method Lagrangian Particle Dispersion Model (LPDM) traceability simulations combined with meteorological factor analysis. The results demonstrates that variation exhibits a bimodal pattern peak afternoon trough early morning, mean 460 ± 15 ppm. Transportation emissions were identified as dominant source variation. trend was first increasing then decreasing, an increase February–March decrease April, indicating it affected by effect vegetation photosynthesis urban human activities. simulation analysis showed more local emission sources than sinks, industrial transportation north–south direction had significant concentration. This research provides critical support for formulating carbon reduction strategies coordinated atmospheric environment management subtropical cities.

Язык: Английский

Процитировано

0

AI Analytics for Carbon-Neutral City Planning: A Systematic Review of Applications DOI Creative Commons
Cong Cong, Jessica Page, Yoonshin Kwak

и другие.

Urban Science, Год журнала: 2024, Номер 8(3), С. 104 - 104

Опубликована: Авг. 1, 2024

Artificial intelligence (AI) has become a transformative force across various disciplines, including urban planning. It unprecedented potential to address complex challenges. An essential task is facilitate informed decision making regarding the integration of constantly evolving AI analytics into planning research and practice. This paper presents review how methods are applied in studies, focusing particularly on carbon neutrality We highlight already being used generate new scientific knowledge interactions between human activities nature. consider conditions which advantages AI-enabled studies can positively influence decision-making outcomes. also importance interdisciplinary collaboration, responsible governance, community engagement guiding data-driven suggest contribute supporting carbon-neutrality goals.

Язык: Английский

Процитировано

3

Metaheuristic Optimizing Energy Recovery from Plastic Waste in a Gasification-Based System for Waste Conversion and Management DOI
Cao Yan, Azher M. Abed, Pradeep Kumar Singh

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133482 - 133482

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Spatial Impact of Green Finance Reform Pilot Zones on Environmental Efficiency: A Pathway to Mitigating China's Energy Trilemma DOI
Xingqi Zhao, Xiaojun Ke, Songyu Jiang

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133602 - 133602

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Research on industrial carbon emission prediction method based on CNN–LSTM under dual carbon goals DOI Creative Commons

Xuwei Xia,

Dongge Zhu,

Jiangbo Sha

и другие.

International Journal of Low-Carbon Technologies, Год журнала: 2025, Номер 20, С. 580 - 589

Опубликована: Янв. 1, 2025

Abstract In order to achieve the dual carbon goal, a prediction method of industrial emissions based on CNN–LSTM was studied. The extended Kaya identity is used measure emissions, and LMDI decomposition determine influencing factors. model inputs historical emission data, extracts spatial features through CNN, then makes time series by LSTM, finally outputs results. Experiments show that this can effectively predict in different scenarios provide support for goal double carbon.

Язык: Английский

Процитировано

0