Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Earth and Space Science, Год журнала: 2024, Номер 11(12)
Опубликована: Дек. 1, 2024
Abstract Tropical cyclones (TCs) are one of the biggest threats to life and property around world. Accurate estimation TC wind hazard requires catastrophic TCs having a very long return period spanning up thousands years. Since reliable data available only for recently decades, stochastic modeling simulation turned out be an effective approach achieve more stable estimates. In common practice, hundreds synthetic generated first, then fields reconstructed along tracks estimation. A Bayesian hierarchical reconstruction field is proposed. modified Rankine vortex adopted as model, which four free parameters modeled simultaneously through multi‐output neural network latent process field. The finally represented, spatially temporally, by set weights, model averaging technique used parameter reconstruction, based on ensemble maximum posteriori estimates weights. Together with previously proposed algorithm simulation, two‐stage scheme has been formed, best‐track thus highly consistent. Application this offshore waters in western North Pacific basin shows inspiring performance great flexibility various purposes
Язык: Английский
Процитировано
1Water, Год журнала: 2024, Номер 17(1), С. 12 - 12
Опубликована: Дек. 24, 2024
The accurate prediction of total phosphorus (TP) is crucial for the early detection water quality eutrophication. However, predicting TP concentrations among canal sites challenging due to their complex spatiotemporal dependencies. To address this issue, study proposes a GAT-Informer method based on correlations predict in Beijing–Hangzhou Grand Canal Basin Changzhou City. begins by creating feature sequences each site time lag relationship concentration between sites. It then constructs graph data combining real river distance and correlation sequences. Next, spatial features are extracted fusing node using attention (GAT) module. employs Informer network, which uses sparse mechanism extract temporal efficiently simulating model was evaluated R2, MAE, RMSE, with experimental results yielding values 0.9619, 0.1489%, 0.1999%, respectively. exhibits enhanced robustness superior predictive accuracy comparison traditional models.
Язык: Английский
Процитировано
1Earth Science Informatics, Год журнала: 2024, Номер 18(1)
Опубликована: Дек. 28, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0