Environmental Research, Год журнала: 2024, Номер 263, С. 120029 - 120029
Опубликована: Сен. 18, 2024
Язык: Английский
Environmental Research, Год журнала: 2024, Номер 263, С. 120029 - 120029
Опубликована: Сен. 18, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104626 - 104626
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
3Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(4), С. 113152 - 113152
Опубликована: Май 23, 2024
Язык: Английский
Процитировано
13Journal of environmental chemical engineering, Год журнала: 2025, Номер unknown, С. 115839 - 115839
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Journal of Environmental Management, Год журнала: 2024, Номер 364, С. 121430 - 121430
Опубликована: Июнь 13, 2024
Язык: Английский
Процитировано
8Journal of Water Process Engineering, Год журнала: 2024, Номер 58, С. 104896 - 104896
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
6Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122386 - 122386
Опубликована: Сен. 10, 2024
Язык: Английский
Процитировано
6Desalination, Год журнала: 2024, Номер 592, С. 118092 - 118092
Опубликована: Сен. 7, 2024
Язык: Английский
Процитировано
5Energies, Год журнала: 2023, Номер 16(23), С. 7785 - 7785
Опубликована: Ноя. 27, 2023
The sustainability and efficiency of the wind energy industry rely significantly on accuracy reliability speed forecasting, a crucial concern for optimal planning operation power generation. In this study, we comprehensively evaluate performance eight prediction models, spanning statistical, traditional machine learning, deep learning methods, to provide insights into field forecasting. These models include statistical such as ARIMA (AutoRegressive Integrated Moving Average) GM (Grey Model), like LR (Linear Regression), RF (random forest), SVR (Support Vector well comprising ANN (Artificial Neural Network), LSTM (Long Short-Term Memory), CNN (Convolutional Network). Utilizing five common model evaluation metrics, derive valuable conclusions regarding their effectiveness. Our findings highlight exceptional particularly Convolutional Network (CNN) model, in prediction. stands out its remarkable stability, achieving lowest mean squared error (MSE), root (RMSE), absolute (MAE), percentage (MAPE), higher coefficient determination (R2). This underscores model’s outstanding capability capture complex patterns, thereby enhancing renewable industry. Furthermore, emphasized impact parameter tuning external factors, highlighting potential further improve accuracy. hold significant implications future development
Язык: Английский
Процитировано
11Water Research, Год журнала: 2025, Номер 274, С. 123166 - 123166
Опубликована: Янв. 20, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(4), С. 1592 - 1592
Опубликована: Фев. 14, 2025
Nitrous oxide (N2O) is a potent greenhouse gas and contributor to ozone depletion, with wastewater treatment plants (WWTPs) serving as significant sources of emissions due biological processes involving bacteria. This study evaluates research on the role bacteria in N2O from WWTPs between 2000 2023 based an analysis Web Science Core Collection Database using keywords “bacteria”, “nitrous oxide”, “emission”, “wastewater plant”. The findings reveal substantial growth past decade, leading publications appearing Water Research, Bioresource Technology, Environmental & Technology. China, United States, Australia have been most active contributors this field. Key topics include denitrification, treatment, emissions. microbial community composition significantly influences WWTPs, bacterial consortia playing pivotal role. However, further needed explore strain-specific genes, enzyme expressions, differentiation contributing production emission. System design operation must also consider dissolved oxygen nitrite concentration factors. Advances genomics artificial intelligence are expected enhance strategies for reducing WWTPs.
Язык: Английский
Процитировано
0