Environmental Monitoring and Assessment, Год журнала: 2024, Номер 197(1)
Опубликована: Дек. 6, 2024
Язык: Английский
Environmental Monitoring and Assessment, Год журнала: 2024, Номер 197(1)
Опубликована: Дек. 6, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер 442, С. 140827 - 140827
Опубликована: Янв. 30, 2024
Язык: Английский
Процитировано
7Remote Sensing, Год журнала: 2024, Номер 16(11), С. 2018 - 2018
Опубликована: Июнь 4, 2024
The Yellow River Basin (YB) acts as a key barrier to ecological security and is an important experimental region for high-quality development in China. There growing demand assess the status order promote sustainable of YB. eco-environmental quality (EEQ) YB was assessed at both regional provincial scales utilizing remote sensing-based index (RSEI) with Landsat images from 2000 2020. Then, Theil–Sen (T-S) estimator Mann–Kendall (M-K) test were utilized evaluate its variation trend. Next, optimal parameter-based geodetector (OPGD) model used examine drivers influencing EEQ Finally, geographically weighted regression (GWR) further explore responses RSEI changes. results suggest that (1) lower value found north, while higher south Sichuan (SC) Inner Mongolia (IM) had highest lowest EEQ, respectively, among provinces. (2) Throughout research period, improved, whereas it deteriorated Henan (HA) Shandong (SD) (3) soil-available water content (AWC), annual precipitation (PRE), distance impervious surfaces (IMD) main factors affecting spatial differentiation (4) influence meteorological (PRE TMP) on changes greater than IMD, IMD showed significant increasing provide valuable information application local construction planning.
Язык: Английский
Процитировано
7Applied Geography, Год журнала: 2024, Номер 171, С. 103359 - 103359
Опубликована: Авг. 13, 2024
Язык: Английский
Процитировано
7Journal for Nature Conservation, Год журнала: 2025, Номер unknown, С. 126835 - 126835
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Ecological Indicators, Год журнала: 2025, Номер 171, С. 113186 - 113186
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Geography, Год журнала: 2025, Номер 177, С. 103568 - 103568
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(6), С. 3061 - 3061
Опубликована: Март 12, 2025
Farmland changes have a profound impact on agricultural ecosystems and global food security, making the timely accurate detection of these crucial. Remote sensing image change provides an effective tool for monitoring farmland dynamics, but existing methods often struggle with high-resolution images due to complex scenes insufficient multi-scale information capture, particularly in terms missed detections. Missed detections can lead underestimating land changes, which affects key areas such as resource allocation, decision-making, environmental management. Traditional CNN-based models are limited extracting contextual information. To address this, we propose CNN-Transformer-based Multi-Scale Attention Siamese Network (MT-SiamNet), focus reducing The model first extracts local features using CNN, then aggregates through Transformer module, incorporates attention mechanism increase areas, thereby effectively Experimental results demonstrate that MT-SiamNet achieves superior performance across multiple datasets. Specifically, our method F1 score 65.48% HRSCD dataset 75.02% CLCD dataset, significantly improving reliability detection, providing strong support decision-making
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Апрель 2, 2025
Язык: Английский
Процитировано
0Environmental Microbiome, Год журнала: 2025, Номер 20(1)
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Ecological Indicators, Год журнала: 2024, Номер 167, С. 112603 - 112603
Опубликована: Сен. 16, 2024
Язык: Английский
Процитировано
2