International Journal of Hydrogen Energy, Год журнала: 2024, Номер 101, С. 334 - 347
Опубликована: Дек. 31, 2024
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 101, С. 334 - 347
Опубликована: Дек. 31, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер 469, С. 143220 - 143220
Опубликована: Июль 20, 2024
Язык: Английский
Процитировано
6Energy, Год журнала: 2024, Номер 312, С. 133548 - 133548
Опубликована: Окт. 20, 2024
Язык: Английский
Процитировано
4Land, Год журнала: 2025, Номер 14(4), С. 844 - 844
Опубликована: Апрель 12, 2025
Northeast China, a traditional heavy industrial base, faces significant carbon emissions challenges. This study analyzes the drivers of in 35 cities from 2000–2022, utilizing machine-learning approach based on stacking model. A model, integrating random forest and eXtreme Gradient Boosting (XGBoost) as base learners support vector machine (SVM) meta-model, outperformed individual algorithms, achieving coefficient determination (R2) 0.82. Compared to methods, model significantly improves prediction accuracy stability by combining strengths multiple algorithms. The Shapley additive explanations (SHAP) analysis identified key drivers: total energy consumption, urbanization rate, electricity population positively influenced emissions, while sulfur dioxide (SO2) smoke dust average temperature, humidity showed negative correlations. Notably, green coverage exhibited complex, slightly positive relationship with emissions. Monte Carlo simulations three scenarios (Baseline Scenario (BS), Aggressive De-coal (ADS), Climate Resilience (CRS)) projected peak 2030 under ADS, lowest fluctuation (standard deviation 5) largest reduction (17.5–24.6%). Baseline indicated around 2039–2040. These findings suggest important role de-coalization. Targeted policy recommendations emphasize accelerating transition, promoting low-carbon transformation, fostering urbanization, enhancing sequestration China’s sustainable development achievement dual-carbon goals.
Язык: Английский
Процитировано
0Energy & Fuels, Год журнала: 2025, Номер unknown
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2024, Номер 949, С. 175034 - 175034
Опубликована: Июль 25, 2024
Язык: Английский
Процитировано
3Processes, Год журнала: 2024, Номер 12(10), С. 2207 - 2207
Опубликована: Окт. 10, 2024
This study presents a dynamic multi-factor correlation analysis method designed to predict provincial carbon dioxide emissions (CDE) within China’s Bohai Rim region, including Tianjin, Hebei, Shandong, and Liaoning. By employing the sliding window technique, curves are computed between various influencing factors CDE at different time intervals, thereby facilitating identification of key feature attributes. A novel metric, Consistency Index Influencing Factors (CIIF), is introduced evaluate consistency these across regions. Furthermore, Accurate Predictive Capability Indicator (APCI) defined measure impact categories on prediction accuracy. The findings reveal that models relying single factor exhibit limited accuracy, whereas combining multiple with diverse features significantly improves introduces refined analytical framework comprehensive indicator system for prediction. It enhances understanding complex influence provides scientific rationale implementing effective emission reduction strategies.
Язык: Английский
Процитировано
2Environment Development and Sustainability, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 10, 2024
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2024, Номер 381, С. 125192 - 125192
Опубликована: Дек. 23, 2024
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2024, Номер 101, С. 334 - 347
Опубликована: Дек. 31, 2024
Язык: Английский
Процитировано
0