Spatial distribution and hydrogeochemical processes of high iodine groundwater in the Hetao Basin, China DOI

Kehui Yue,

Yapeng Yang, Kun Qian

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 953, С. 176116 - 176116

Опубликована: Сен. 7, 2024

Язык: Английский

Driving factor, source identification, and health risk of PFAS contamination in groundwater based on the self-organizing map DOI

Jingwen Zeng,

Kai Liu, Xiao Liu

и другие.

Water Research, Год журнала: 2024, Номер 267, С. 122458 - 122458

Опубликована: Сен. 15, 2024

Язык: Английский

Процитировано

8

Optimized groundwater quality evaluation using unsupervised machine learning, game theory and Monte-Carlo simulation DOI
Yuting Yan,

Yunhui Zhang,

Shiming Yang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 371, С. 122902 - 122902

Опубликована: Ноя. 11, 2024

Язык: Английский

Процитировано

6

Optimizing coastal groundwater quality predictions: A novel data mining framework with cross-validation, bootstrapping, and entropy analysis DOI
Abu Reza Md. Towfiqul Islam, Md. Abdullah-Al Mamun, Mehedi Hasan

и другие.

Journal of Contaminant Hydrology, Год журнала: 2024, Номер 269, С. 104480 - 104480

Опубликована: Дек. 10, 2024

Язык: Английский

Процитировано

6

Groundwater suitability assessment for irrigation and drinking purposes by integrating spatial analysis, machine learning, water quality index, and health risk model DOI
Yuting Yan, Yunhui Zhang, Rongwen Yao

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(27), С. 39155 - 39176

Опубликована: Май 29, 2024

Язык: Английский

Процитировано

4

Predictive framework of vegetation resistance in channel flow DOI Creative Commons

Fengcong Jia,

Weijie Wang, Yu Han

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 4, 2025

Predicting vegetation-induced flow resistance remains a significant challenge due to the diverse and dynamic nature of river vegetation. Although numerous empirical models are available, they often fail generalize across different environmental conditions, leading inaccurate predictions. This study introduces machine learning-based framework for predicting vegetation resistance, incorporating nine ML methods, including SVM, XGBoost, BP. To improve predictive performance, optimization algorithms such as PSO, WSO, RIME were applied. A comprehensive dataset 490 samples multiple scales was used evaluate model accuracy, indicated: (1) The submergence ratio α Froude number Fr most sensitive parameters affecting Cd, while missing density λ blockage β significantly reduce accuracy; (2) XGBoost outperforms other models, achieving highest accuracy (R2 = 0.9552); (3) stable six parameter deficiency scenarios, with maintaining R2 > 0.85 in all cases. In conclusion, this highlights transformative potential proposed overcoming long-standing challenges estimating vegetated channels. It provides valuable insights sustainable management, bolsters restoration efforts, enhances complex, environments.

Язык: Английский

Процитировано

0

Machine Learning-based Model for Groundwater Quality Prediction: A Comprehensive Review and Future Time–Cost Effective Modelling Vision DOI

Farhan ‘Ammar Fardush Sham,

Ahmed El‐Shafie,

Wan Zurina Binti Jaafar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 19, 2025

Язык: Английский

Процитировано

0

Hydrochemical evolution and assessment of groundwater quality in an intensively agricultural area: case study of Chengdu plain, Southwestern China DOI
Rongwen Yao, Jiaqian Xu, Ye Zhou

и другие.

Environmental Earth Sciences, Год журнала: 2025, Номер 84(8)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Potential application of mineral capsules in self-healing cement-based materials under groundwater containing sulfate DOI
Jinglu Li, Shuai Bai, Xinchun Guan

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 457, С. 139471 - 139471

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

Predicting groundwater phosphate levels in coastal multi-aquifers: A geostatistical and data-driven approach DOI
Md. Abdullah-Al Mamun, Abu Reza Md. Towfiqul Islam,

Mst Nazneen Aktar

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 953, С. 176024 - 176024

Опубликована: Сен. 4, 2024

Язык: Английский

Процитировано

1

Spatial distribution and hydrogeochemical processes of high iodine groundwater in the Hetao Basin, China DOI

Kehui Yue,

Yapeng Yang, Kun Qian

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 953, С. 176116 - 176116

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

0