Flood risk assessment of coastal cities based on GCW_ISODATA and explainable artificial intelligence methods DOI

Yawen Zang,

Huimin Wang, Zhenzhen Liu

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105025 - 105025

Опубликована: Ноя. 1, 2024

Язык: Английский

Spatiotemporal Dynamics and Prediction of Habitat Quality Based on Land Use and Cover Change in Jiangsu, China DOI Creative Commons
Ge Shi, Chuang Chen,

Qianqian Cao

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(22), С. 4158 - 4158

Опубликована: Ноя. 7, 2024

Analyzing the spatiotemporal evolution characteristics of urban land use and habitat quality is crucial for sustainable development ecological environments. This study utilizes data Jiangsu Province years 2000, 2010, 2020, applying FLUS model to investigate driving force behind expansion simulate a prediction 2030. By integrating InVEST landscape pattern indices, this analyzes in uses geographical detector analysis examine synergistic effects influencing factors. The results indicate that, from 2000 degradation progressively increased, with spatial distribution levels showing gradual change. Under protection scenario 2030, fragmentation was alleviated. Conversely, under economic scenario, further deteriorated, resulting largest area low-quality regions. Minimal changes occurred natural scenario. (2) indices experienced significant 2020. continuous into other types led trend fragmentation, clear increasing dispersion, sprawl, Shannon’s diversity index, accompanied by decrease cohesion. (3) dominant interacting factors affecting were combinations socioeconomic factors, indicating that economy largely determines quality. findings provide optimization strategies future planning offer references restoration efforts region.

Язык: Английский

Процитировано

5

Flood vulnerability assessment in the Ili River Basin based on the comprehensive symmetric Kullback–Leibler distance DOI Creative Commons
Jinghui Liu, Yanmin Li,

Xinyue Yuan

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 3, 2025

In vulnerability assessments, accurately determining the indicator weights is essential to ensure results' precision and reliability. This paper proposes an optimized comprehensive symmetric Kullback–Leibler (K–L) distance weighting method, in which K–L for each calculated using a grid-based approach, normalized serves as weight indicator. ArcGIS software was employed assess Ili River Basin flood case study. The results reveal following: (1) method facilitated variable processing disaster where it offered scientific adaptable approach indexing vulnerability, thus improving both evaluation accuracy practicality. (2) spatial distribution of levels uneven, with higher observed northwestern, southwestern, southeastern regions, lower eastern northeastern areas. Yining County, City, certain southern regions Cocodala City were particularly vulnerable due multiple influencing factors, including population, economy, society. These areas require focused attention preventive measures.

Язык: Английский

Процитировано

0

Risk assessment of flood disasters in the Loess Plateau using the Hazard–Sensitivity–Vulnerability–Recoverability framework DOI

Pengfei Meng,

Xiaoyu Song, Lanjun Li

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105379 - 105379

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Scale effects and driving mechanisms of flood in a multilevel sub-basin perspective - A case study of Haihe River Basin, China DOI
Hanyan Li, Qiao Wang, Mingzhang Zuo

и другие.

Environmental Impact Assessment Review, Год журнала: 2025, Номер 115, С. 107984 - 107984

Опубликована: Май 15, 2025

Язык: Английский

Процитировано

0

Flood risk assessment of coastal cities based on GCW_ISODATA and explainable artificial intelligence methods DOI

Yawen Zang,

Huimin Wang, Zhenzhen Liu

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105025 - 105025

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

2