Rebuilding high-quality near-surface ozone data based on the combination of WRF-Chem model with a machine learning method to better estimate its impact on crop yields in the Beijing-Tianjin-Hebei region from 2014 to 2019 DOI

Tian Han,

Xiaomin Hu, Jing Zhang

и другие.

Environmental Pollution, Год журнала: 2023, Номер 336, С. 122334 - 122334

Опубликована: Авг. 9, 2023

Язык: Английский

Air pollution exposure and ovarian reserve impairment in Shandong province, China: The effects of particulate matter size and exposure window DOI Creative Commons
Lihong Pang, Wenhao Yu, Jiale Lv

и другие.

Environmental Research, Год журнала: 2022, Номер 218, С. 115056 - 115056

Опубликована: Дек. 12, 2022

Язык: Английский

Процитировано

20

Ozone concentration forecasting utilizing leveraging of regression machine learnings: A case study at Klang Valley, Malaysia DOI Creative Commons
Sarmad Dashti Latif, Vivien Lai,

Farah Hazwani Hahzaman

и другие.

Results in Engineering, Год журнала: 2024, Номер 21, С. 101872 - 101872

Опубликована: Фев. 6, 2024

At Klang Valley, ground-level ozone is a significant source of air pollution. Ozone (O3) concentration affected by meteorological conditions and pollutants. Linear Regression Models (LRM), Trees (RT), Support Vector Machines (SVM), Ensembles (ET), Gaussian Process (GPR), Neural Networks (NN) are utilized in thorough analysis to determine the accuracy various machine learning forecasting ground level O3 concentration. The primary associated contributions from this research comparisons regression statistical model performance based on indicators root mean squared error (RMSE), coefficient determination (R2), (MSE), absolute (MAE), prediction speed, training time models. Overall, exponential GPR outperformed other models scenario 1 (S-1), 2 (S-2), (S-3), 4 (S-4) incorporating multiple number lags into respective scenarios new method testing "re-substitution" performed more reliable consistent than applying identical datasets 20 % testing. findings showed that accurate results with R2 = 0.98, 0.95, 0.96, 0.96 for S-1, S-2, S-3 S-4 respectively.

Язык: Английский

Процитировано

5

Aging biomarkers: Potential mediators of association between long‐term ozone exposure and risk of atherosclerosis DOI
Ruiying Li, Gongbo Chen, Xiaotian Liu

и другие.

Journal of Internal Medicine, Год журнала: 2022, Номер 292(3), С. 512 - 522

Опубликована: Апрель 13, 2022

Abstract Background Long‐term exposure to ambient ozone links aging biomarkers and increased risk for atherosclerotic cardiovascular diseases (ASCVD). However, the roles of in association long‐term with ASCVD are unclear. Methods A total 5298 participants completed questionnaire physical examination provided biological specimens. Aging (telomere length [TL] mitochondrial copy number [mtDNA‐CN]) were measured by using a real‐time polymerase chain reaction method. The concentration was assessed random forest model. Associations or 10‐year analyzed logistic regression models. explored mediation analysis. Results adjusted odds ratios 95% confidence interval high 1.16 (1.08, 1.25), 0.71 (0.60, 0.85), 0.78 (0.64, 0.96) each 1‐unit increment (1 μg/m 3 ) concentration, relative TL, mtDNA‐CN, respectively. mediated proportion between TL mtDNA‐CN 21.13% 7.75%, plus 21.02%. Conclusions associated risk, partially (shortened decreased mtDNA‐CN). This study indicated that pollution–related might be explained telomere–mitochondrial axis aging.

Язык: Английский

Процитировано

17

Estimating monthly surface ozone using multi-source satellite products in China based on Deep Forest model DOI

Xueyao Chen,

Zhige Wang, Yulin Shangguan

и другие.

Atmospheric Environment, Год журнала: 2023, Номер 307, С. 119819 - 119819

Опубликована: Май 11, 2023

Язык: Английский

Процитировано

11

Rebuilding high-quality near-surface ozone data based on the combination of WRF-Chem model with a machine learning method to better estimate its impact on crop yields in the Beijing-Tianjin-Hebei region from 2014 to 2019 DOI

Tian Han,

Xiaomin Hu, Jing Zhang

и другие.

Environmental Pollution, Год журнала: 2023, Номер 336, С. 122334 - 122334

Опубликована: Авг. 9, 2023

Язык: Английский

Процитировано

11