Solar energy prediction in IoT system based optimized complex-valued spatio-temporal graph convolutional neural network DOI
Atul B. Kathole, Devyani Jadhav, Kapil Vhatkar

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 304, С. 112400 - 112400

Опубликована: Сен. 6, 2024

Язык: Английский

A three-stage mechanism for flexibility-oriented energy management of renewable-based community microgrids with high penetration of smart homes and electric vehicles DOI

Xiaohui Zhou,

Seyed Amir Mansouri, Ahmad Rezaee Jordehi

и другие.

Sustainable Cities and Society, Год журнала: 2023, Номер 99, С. 104946 - 104946

Опубликована: Сен. 18, 2023

Язык: Английский

Процитировано

60

A review of the applications of artificial intelligence in renewable energy systems: An approach-based study DOI
Mersad Shoaei, Younes Noorollahi, Ahmad Hajinezhad

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 306, С. 118207 - 118207

Опубликована: Март 16, 2024

Язык: Английский

Процитировано

55

A review of distributed energy system optimization for building decarbonization DOI

Xiaoyu Zhu,

Xingxing Zhang,

Pu Gong

и другие.

Journal of Building Engineering, Год журнала: 2023, Номер 73, С. 106735 - 106735

Опубликована: Май 9, 2023

Язык: Английский

Процитировано

54

Optimal peak-shaving for dynamic demand response in smart Malaysian commercial buildings utilizing an efficient PV-BES system DOI
Jahangir Hossain, Nagham Saeed, Rampelli Manojkumar

и другие.

Sustainable Cities and Society, Год журнала: 2023, Номер 101, С. 105107 - 105107

Опубликована: Дек. 13, 2023

Язык: Английский

Процитировано

46

Binary firefly algorithm based reconfiguration for maximum power extraction under partial shading and machine learning approach for fault detection in solar PV arrays DOI

S. Saravanan,

R. Senthil Kumar,

P. Balakumar

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 154, С. 111318 - 111318

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

18

Dynamic pricing for load shifting: Reducing electric vehicle charging impacts on the grid through machine learning-based demand response DOI

P. Balakumar,

Senthil Kumar R,

Vinopraba Thirumavalavan

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 103, С. 105256 - 105256

Опубликована: Фев. 7, 2024

Язык: Английский

Процитировано

17

A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods DOI Creative Commons

Mahziyar Dostmohammadi,

Mona Zamani Pedram,

Siamak Hoseinzadeh

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 364, С. 121264 - 121264

Опубликована: Июнь 12, 2024

The considerable amount of energy utilized by buildings has led to various environmental challenges that adversely impact human existence. Predicting buildings' usage is commonly acknowledged as encouraging efficiency and enabling well-informed decision-making, ultimately leading decreased consumption. Implementing eco-friendly architectural designs paramount in mitigating consumption, particularly recently constructed structures. This study utilizes clustering analysis on the original dataset capture complex consumption patterns over periods. yields two distinct subsets represent low high an additional subset exclusively encompasses weekends, attributed specific behavior occupants. Ensemble models have become increasingly popular due advancements machine learning techniques. research three discrete algorithms, namely Artificial Neural Network (ANN), K-nearest neighbors (KNN), Decision Trees (DT). In addition, application employs more algorithms bagging boosting: Random Forest (RF), Extreme Gradient Boosting (XGB), (GBT). To augment accuracy predictions, a stacking ensemble methodology employed, wherein forecasts generated many are combined. Given obtained outcomes, thorough examination undertaken, encompassing techniques stacking, bagging, boosting, conduct comprehensive comparative study. It pertinent highlight technique consistently exhibits superior performance relative alternative methodologies across spectrum heterogeneous datasets. Furthermore, using genetic algorithm enables optimization combination base learners, resulting notable enhancement prediction accuracy. After implementing this technique, GA-Stacking demonstrated remarkable Mean Absolute Percentage Error (MAPE) scores. improvement observed was substantial, surpassing 90 percent for all subset-1, subset-2, subset-3, achieved R

Язык: Английский

Процитировано

10

Innovations in improving photovoltaic efficiency: A review of performance enhancement techniques DOI
Moataz M. Abdel‐Aziz, Asmaa A. ElBahloul

Energy Conversion and Management, Год журнала: 2025, Номер 327, С. 119589 - 119589

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Optimized LSTM-Based Electric Power Consumption Forecasting for Dynamic Electricity Pricing in Demand Response Scheme of Smart Grid DOI Creative Commons

P. Balakumar,

Senthil Kumar R

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104356 - 104356

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Advancing smart net-zero energy buildings with renewable energy and electrical energy storage DOI
Dong Luo, Jia Liu, Huijun Wu

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115850 - 115850

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

2