Springer eBooks, Год журнала: 2024, Номер unknown, С. 1 - 282
Опубликована: Янв. 1, 2024
Язык: Английский
Springer eBooks, Год журнала: 2024, Номер unknown, С. 1 - 282
Опубликована: Янв. 1, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 915, С. 169950 - 169950
Опубликована: Янв. 9, 2024
Язык: Английский
Процитировано
33Urban Climate, Год журнала: 2025, Номер 59, С. 102301 - 102301
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
3Building and Environment, Год журнала: 2023, Номер 247, С. 111029 - 111029
Опубликована: Ноя. 16, 2023
Язык: Английский
Процитировано
30Sustainable Cities and Society, Год журнала: 2024, Номер 113, С. 105659 - 105659
Опубликована: Июль 14, 2024
Язык: Английский
Процитировано
18Ecological Indicators, Год журнала: 2023, Номер 158, С. 111244 - 111244
Опубликована: Ноя. 24, 2023
Consistent urbanization and global warming escalates the summer temperatures of urban, significantly impacting daily lives endangering well-being. It is difficult to balance urban construction increasing blue-green space. Hence, understanding impact changes in spatial patterns different spaces on thermal environment beneficial rational layout patterns. Drawing from case study Shanghai, by employing bivariate autocorrelation multiscale geographically weighted regression, interplay between distribution modifications land surface temperature grades scrutinized, thus unraveling underlying mechanisms their mutual influence. The findings reveal following: (1) transformation pattern exhibited substantial discrepancies northern southern sectors. (2) alteration Shanghai varies spatially characterized a decrease grade southwestern suburbs, an increase east, almost no change central region. (3) Furthermore, correlation extent manifested unevenness. (4) Finally, mechanism alterations city emanates primarily influence heat exchange areas. instability can provide implications for planners.
Язык: Английский
Процитировано
19Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 106032 - 106032
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
7Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106234 - 106234
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Journal of Cleaner Production, Год журнала: 2023, Номер 414, С. 137680 - 137680
Опубликована: Июнь 2, 2023
Язык: Английский
Процитировано
14Sustainable Cities and Society, Год журнала: 2024, Номер 112, С. 105597 - 105597
Опубликована: Июнь 20, 2024
Climate changes have led to increasing global energy consumption, detrimental the sustainable development of society. Urban blue-green infrastructure (UBGI) can improve urban microclimate. However, influence intensity UBGI on microclimate has not been quantified deeply use efficiency water and greenery resources. To solve research deficiencies, this study numerically simulated for 44 scenarios with different resource configurations (various body areas coverages) in summer. Based simulations, developed novel mathematical models thermo-environment (BGTE) quantify UBGI. The results indicated that daytime synergies first increased then decreased time. significance time (t), area (Sw), tree coverage rate (TCR), shrub (SCR), grassland (GLCR) synergy was by artificial neural network: t (39.4%), Sw (22.6%), TCR (22.0%), SCR (13.2%), GLCR (2.8%). make overall effect relatively efficient, should be less than 10000 m2, greater 65%, close 15%. This provides practical ideas efficient
Язык: Английский
Процитировано
6Sustainable Cities and Society, Год журнала: 2024, Номер 101, С. 105208 - 105208
Опубликована: Янв. 14, 2024
The growing impact of climate change, including extreme weather events, represents a significant challenge for humanity. With most the world's population living in urban areas, heat island effect and anthropogenic contribute to elevated city temperatures. This increase warming threatens human health demands deeper understanding thermal distribution environments. Collecting accessible widespread temperature data areas is essential address this challenge. study aims develop methodology anticipating environments, leveraging Citizen Weather Stations (CWS) as valuable crowdsourcing sources. ultimate goal create predictive model that estimates temperatures based on government meteorological station forecasts, improving planning, regulating temperature-based routes, preventing issues vulnerable populations, enhancing livability. divided into three fundamental stages: acquisition through CWS with citizen collaboration, development evaluation optimal forecast models stations (SWS) data, its exploitation terms utility applicability. encompasses collection filtering ensure usefulness implement reliable models. resulting tool facilitates informed decision-making precise seasonal event planning effectively addressing challenges extrapolation contributing more effective adaptation mitigation strategies change heatwaves. results obtained probe feasibility using predict which has been demonstrated accurately. achievement, proven be source context. Also, process described applied case effective, discarding approximately 34.87% data. achieved by detecting eliminating anomalies, considering availability, adhering specific quality criteria. Finally, developed prediction ability optimally estimate temperatures, utilizing provided (SWS). performance indicators support claim. For linear regression model, Mean Squared Error (MSE) 2.177 an R-squared (R2) 0.960 are obtained, while neural network, MSE 1.284 R2 0.976 achieved.
Язык: Английский
Процитировано
5