The Design Journal, Год журнала: 2024, Номер unknown, С. 1 - 7
Опубликована: Июль 3, 2024
Язык: Английский
The Design Journal, Год журнала: 2024, Номер unknown, С. 1 - 7
Опубликована: Июль 3, 2024
Язык: Английский
Environmental Earth Sciences, Год журнала: 2024, Номер 83(6)
Опубликована: Март 1, 2024
Язык: Английский
Процитировано
1Energy and Buildings, Год журнала: 2023, Номер 296, С. 113375 - 113375
Опубликована: Июль 18, 2023
Язык: Английский
Процитировано
3International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2023, Номер 126, С. 103606 - 103606
Опубликована: Дек. 16, 2023
Primary forests in Indonesia are high decline. The increase population exacerbates forest reductions, as changed to settlements. This impacts the loss of biodiversity and animals Indonesia. An important way prevent is conserve crucial areas. Spatial modeling can be done detect conservation areas that for future. study analyzes index ecosystem services habitat suitability extinct determine priority Here we predict indicated lost We use integrated spatial data using GIS (Geography Information System) From results, there will a change land cover settlement by 2030. causes service (ESI) value decrease from an initially each year. In terms suitability, majority integration has been performed also shows very ESI conformity Java region. research hopefully used policy makers new on island Java.
Язык: Английский
Процитировано
3Remote Sensing Letters, Год журнала: 2024, Номер 15(3), С. 233 - 244
Опубликована: Фев. 19, 2024
Driven by global sustainability goals, understanding land surface temperature (LST) in urban thermal environments (UTE) is crucial. This study analyses remotely sensed LST data from Aqua and Terra satellites a rapidly growing non-tier Indian city. It uniquely integrates remote sensing soft computational analysis to predict daytime using artificial neural networks (ANN). The categorized based on transfer functions hyper-parameters enhance the comprehension of prediction simulation scenarios employing Back Propagation Neural Network (BPNN) model. Results indicate that tansig function yields best performance overall prediction, while purelin performs least effectively. provides evidence computing techniques effectively estimate data, offering valuable solution for scarcity issues. However, findings are specific area may vary elsewhere. Exploring alternative methods incorporating other areas could potentially improve accuracy performance. Future research focus investigating mechanisms behind different their interactions with various factors. Additionally, integrating variables like vegetation index, soil moisture, others contribute more holistic dynamics predictive capabilities.
Язык: Английский
Процитировано
0The Design Journal, Год журнала: 2024, Номер unknown, С. 1 - 7
Опубликована: Июль 3, 2024
Язык: Английский
Процитировано
0