Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Building and Environment, Год журнала: 2024, Номер unknown, С. 112088 - 112088
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
2Remote Sensing, Год журнала: 2024, Номер 16(23), С. 4524 - 4524
Опубликована: Дек. 2, 2024
Evaluating solar radiation distribution at the urban scale is crucial for optimizing placement and size of installations managing heat. This study introduces a method predicting using 2D mapping data, applying Generative Adversarial Network (GAN) model to city Boston. Traditional simulation methods, such as 3D modeling satellite imagery, require complex resource-intensive data inputs. In contrast, this research allows open-source geographic information—such building footprints, heights, terrain—to predict various spatial scales (150 m, 300 500 m). The GAN model, detailed results, trained paired datasets information heatmaps. It achieved high accuracy resolution, with m demonstrating best performance (R2 = 0.864). model’s capability generate high-resolution (2 m) maps from simplified inputs demonstrates potential GANs climate prediction, offering rapid efficient alternative traditional methods. approach holds significant planning, particularly in photovoltaic (PV) system layouts UHI effect.
Язык: Английский
Процитировано
2Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0