Data-driven neighborhood-level carbon emission accounting models and decarbonization strategies: Empirical study on Central Shenyang City DOI

Xiaobin Ye,

Zhenyu Wang, Kai Cui

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер 125, С. 106346 - 106346

Опубликована: Апрель 4, 2025

Язык: Английский

Applications and Trends of Machine Learning in Building Energy Optimization: A Bibliometric Analysis DOI Creative Commons
Jingyi Liu, J.F. Chen

Buildings, Год журнала: 2025, Номер 15(7), С. 994 - 994

Опубликована: Март 21, 2025

With the rapid advancement of machine learning (ML) technologies, their innovative applications in enhancing building energy efficiency are increasingly prominent. Utilizing tools such as VOSviewer and Bibliometrix, this study systematically reviews body related literature, focusing on key emerging trends cutting-edge ML techniques, including deep learning, reinforcement unsupervised optimizing performance managing carbon emissions. First, paper delves into role prediction, intelligent management, sustainable design, with particular emphasis how smart systems leverage real-time data analysis prediction to optimize usage significantly reduce emissions dynamically. Second, summarizes technological evolution future sector identifies critical challenges faced by field. The findings provide a technology-driven perspective for advancing sustainability construction industry offer valuable insights research directions.

Язык: Английский

Процитировано

1

Data-driven neighborhood-level carbon emission accounting models and decarbonization strategies: Empirical study on Central Shenyang City DOI

Xiaobin Ye,

Zhenyu Wang, Kai Cui

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер 125, С. 106346 - 106346

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0