Research on the Root Cause Tracing Method of the Change in Access to Electricity Index Based on Data Mining DOI Creative Commons
Haoming Luo, Xu Zhou, Wei Zheng

и другие.

Energies, Год журнала: 2025, Номер 18(9), С. 2275 - 2275

Опубликована: Апрель 29, 2025

Superior electricity-optimized business ecosystems (EOBEs) have evolved into pivotal determinants in catalyzing industrial–commercial prosperity. The access to electricity index (AEI) constitutes a valid instrument for assessing the EOBE. To realize accurate evaluation of EOBE and root cause tracing its changes, this paper constructs new analytical model evaluating monitoring changes First, based on Business Ready (B-READY) system, considering three factors: power regulatory quality, public service level, enterprises’ gain efficiency. Then, uses raw data collected calculate score AEI enable an assessment Next, priori extract coupling features indicators combines time series policy construct feature matrix. Finally, characteristic contribution was analyzed using support vector regression (SVR) Shapley’s additive interpretation (SHAP) value. experiment shows that factors affecting change are features, decreasing order importance. This study provides reference cases improvement ideas optimization

Язык: Английский

Decoding spatial patterns of urban thermal comfort: Explainable machine learning reveals drivers of thermal perception DOI
Chunguang Hu, Hui Zeng

Environmental Impact Assessment Review, Год журнала: 2025, Номер 114, С. 107895 - 107895

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

4

Investigating the Effects of 2D/3D Urban Morphology on Land Surface Temperature Using High-Resolution Remote Sensing Data DOI Creative Commons

You Mo,

Yongfang Huang,

Ruofei Zhong

и другие.

Buildings, Год журнала: 2025, Номер 15(8), С. 1256 - 1256

Опубликована: Апрель 10, 2025

Understanding the influence of urban morphology on Land Surface Temperature (LST) is essential for planning, development, and mitigating heat island effect. Leveraging high-resolution remote sensing data, this study systematically extracted 64 2D morphological parameters (UMPs) 28 3D UMPs, along with their corresponding summer winter LST at both grid level (using a 30 m × as minimum unit) block an unit). The UMPs were derived from landscape indices land cover, while included building-related (BUMPs) tree-related (TUMPs). Ultimately, multiple statistical methods employed to investigate complex mechanisms through which these across winter. This showed following results: (1) Most significantly correlated in seasons grid/block levels, stronger correlations level. (2) Stepwise regression revealed that combining enhanced explanation, achieving R2 = 70.9% (summer) 65.7% (winter) entire area, consistent results built-up zones. (3) Relative importance analysis identified 35 influential features, ranked follows: > BUMPs TUMPs. highlights UMPs’ dominance confirming significance. These findings emphasize need integrated design, considering planar layouts vertical configurations buildings/vegetation. provides practical guidance thermal environment mitigation sustainable development optimized spatial planning.

Язык: Английский

Процитировано

1

Addressing the heat exposure risk shift towards new towns and rural areas: Potential strategies inspired by the heat network resilience DOI

Zhenguo Wang,

Guofu Yang, Hao Chen

и другие.

Building and Environment, Год журнала: 2025, Номер unknown, С. 112592 - 112592

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Nonlinear Effects of Human Settlements on Seasonal Land Surface Temperature Variations at the Block Scale: A Case Study of the Central Urban Area of Chengdu DOI Creative Commons

Muze Zhang,

Tong Hou, Yuping Ma

и другие.

Land, Год журнала: 2025, Номер 14(4), С. 693 - 693

Опубликована: Март 25, 2025

The land surface temperature (LST) in the central urban area has shown a consistent upward trend over years, exacerbating heat island (SUHI) effect. Therefore, this study focuses on of Chengdu, using blocks as research scale. Gradient Boosting Decision Tree (GBDT) model and SHAP values are employed to explore nonlinear effects human settlements (HS) LST across different seasons. results show that (1) At block scale, overall impact HS all four seasons tracks following order: built environment (BE) > landscape pattern (LP) socio-economic development (SED). (2) LP is most important factor affecting summer, while BE greatest influence during spring, autumn, winter. (3) Most indicators exhibit seasonal variations their LST. impervious (ISA) exhibits significant positive autumn. In contrast, nighttime light index (NTL) functional mix degree (FMD) exert negative Additionally, normalized difference vegetation (NDVI) negatively affects both spring summer. Moreover, connectivity (CNT) density (FPD) demonstrate notable threshold (4) Certain interaction effects, some combinations these can effectively reduce This reveals HS–LST interactions through multidimensional analysis, offering block-scale planning strategies for sustainable thermal optimization.

Язык: Английский

Процитировано

0

Optimizing green space configuration for mitigating land surface temperature: A case study of karst mountainous cities DOI
Shujun Liu, Zhijie Wang,

Gilbert Kumilamba

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106345 - 106345

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Precise Mitigation Strategies for Urban Heat Island Effect in Hong Kong's New Towns using Automated Machine Learning DOI Creative Commons
Yiyan Li, Hongsheng Zhang, Yinyi Lin

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106350 - 106350

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Novel Spatiotemporal Nonlinear Regression Approach for Unveiling the Impact of Urban Spatial Morphology on Carbon Emissions DOI
Lei Li, Shujie Sun, Liyun Zhong

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106381 - 106381

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

The role of urban green space morphology and threshold in cooling efficiency: evidence from five cities, China DOI

Shibo Bi,

Tian Zheng, Yi Zhang

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145580 - 145580

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

The Landscape Pattern Characteristics of Urban Built-up Land Significantly Influence Urban Thermal Comfort: Evidence from Large Cities in China DOI
Chunguang Hu, Hui Zeng

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106402 - 106402

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Research on the Root Cause Tracing Method of the Change in Access to Electricity Index Based on Data Mining DOI Creative Commons
Haoming Luo, Xu Zhou, Wei Zheng

и другие.

Energies, Год журнала: 2025, Номер 18(9), С. 2275 - 2275

Опубликована: Апрель 29, 2025

Superior electricity-optimized business ecosystems (EOBEs) have evolved into pivotal determinants in catalyzing industrial–commercial prosperity. The access to electricity index (AEI) constitutes a valid instrument for assessing the EOBE. To realize accurate evaluation of EOBE and root cause tracing its changes, this paper constructs new analytical model evaluating monitoring changes First, based on Business Ready (B-READY) system, considering three factors: power regulatory quality, public service level, enterprises’ gain efficiency. Then, uses raw data collected calculate score AEI enable an assessment Next, priori extract coupling features indicators combines time series policy construct feature matrix. Finally, characteristic contribution was analyzed using support vector regression (SVR) Shapley’s additive interpretation (SHAP) value. experiment shows that factors affecting change are features, decreasing order importance. This study provides reference cases improvement ideas optimization

Язык: Английский

Процитировано

0