Enhancing the Rice Price Forecasting Through Holt-Winters-GRU Hybrid Model: Evidence from Global Market Data DOI
Vicente E. Montaño,

Christian Paul Moyon

European journal of management, economics and business., Год журнала: 2024, Номер 1(3), С. 84 - 99

Опубликована: Ноя. 1, 2024

This paper presents a detailed analysis of the Holt-Winters-GRU hybrid model for predicting global rice prices, an essential agricultural commodity. The benefits traditional statistical approaches are combined with deep learning power, and results have been found to outperform standalone GRU. produced test RMSE 27.7532 almost no difference between training testing errors, thus showing robust generalization ability. Detailed scrutiny weight heat map GRU layer reflects intricacies while depicting both seasonal patterns intricate nonlinear relationships present in price time series. findings from study reveal that is usable forecasting movements policymakers, traders, market analysts, considering its ability handle systematic trends shocks. Recommendations implementation, enhancement, risk management, policy applications, future research provided extend further utility this approach commodity markets.

Язык: Английский

Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention DOI Creative Commons
Di Wang,

Sha Li,

Xiaojin Fu

и другие.

Energies, Год журнала: 2024, Номер 17(16), С. 4142 - 4142

Опубликована: Авг. 20, 2024

Accurate power load forecasting can provide crucial insights for system scheduling and energy planning. In this paper, to address the problem of low accuracy prediction, we propose a method that combines secondary data cleaning adaptive variational mode decomposition (VMD), convolutional neural networks (CNN), bi-directional long short-term memory (BILSTM), adding attention mechanism (AM). The Inner Mongolia electricity were first cleaned use K-means algorithm, then further refined with density-based spatial clustering applications noise (DBSCAN) algorithm. Subsequently, parameters VMD algorithm optimized using multi-strategy Cubic-T dung beetle optimization (CTDBO), after which was employed decompose twice-cleaned sequences into number intrinsic functions (IMFs) different frequencies. These IMFs used as inputs CNN-BILSTM-Attention model. model, CNN is feature extraction, BILSTM extracting information from sequence, AM assigning weights features optimize prediction results. It proved experimentally model proposed in paper achieves highest robustness compared other models exhibits high stability across time periods.

Язык: Английский

Процитировано

6

Enhancing Stock Price Forecasting with a Hybrid SES-DA-BiLSTM-BO Model: Superior Accuracy in High-Frequency Financial Data Analysis DOI Creative Commons
Talabathula Jayanth, Manimaran Aridoss,

G Siva

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 173618 - 173637

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

4

Kolmogorov–Arnold recurrent network for short term load forecasting across diverse consumers DOI
Muhammad Umair Danish, Katarina Grolinger

Energy Reports, Год журнала: 2024, Номер 13, С. 713 - 727

Опубликована: Дек. 24, 2024

Язык: Английский

Процитировано

3

Enhanced Stock Price Prediction with DES-ED-Bi-GRU Using Smooth Maximum Unit Activation Function DOI
Talabathula Jayanth, Manimaran Aridoss

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 395 - 405

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Evaluating battery minerals future supply through production predicting in the context of the green energy transition DOI Creative Commons

Anahita Jannesar Niri,

Gregory Poelzer, Maria Pettersson

и другие.

Resources Policy, Год журнала: 2025, Номер 103, С. 105526 - 105526

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

Performance Assessment of Machine Learning Techniques in Electronic Nose Systems for Power Transformer Fault Detection DOI Creative Commons
Selene Araya, Jorge Alfredo Ardila‐Rey, Miguel A. Cabra de Luna

и другие.

Energy and AI, Год журнала: 2025, Номер unknown, С. 100497 - 100497

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

High-precision short-term industrial energy consumption forecasting via parallel-NN with Adaptive Universal Decomposition DOI
Fan Yang,

S Ge,

Jian Liu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128366 - 128366

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Developing a Novel Hybrid Model Double Exponential Smoothing and Dual Attention Encoder-Decoder Based Bi-Directional Gated Recurrent Unit Enhanced With Bayesian Optimization to Forecast Stock Price DOI Creative Commons
Talabathula Jayanth,

A. Manimaran

IEEE Access, Год журнала: 2024, Номер 12, С. 114760 - 114785

Опубликована: Янв. 1, 2024

Financial market prediction has shown considerable potential in the past few years from combination of contemporary Deep Learning (DL) techniques and traditional time series forecasting methodologies. To predict stock prices three distinct companies General Electric (GE), Microsoft (MSFT), Amazon (AMZN) datasets. This study presents a novel hybrid model that combines Double Exponential Smoothing (DES) method with Dual Attention Encoder-Decoder based Bi-directional GRU, optimized using Bayesian Optimization (DA-ED-Bi-GRU-BO). By combining best features old methods, seeks to efficiently identify patterns trends data. When handling data, DES offers reliable flexible mechanism considers seasonality The DA-ED-Bi-GRU added deep learning further improves its comprehension intricate found parameters are adjusted optimization (BO) maximize model's performance. Several performance indicators, such as Mean Absolute Error (MAE), Squared (MSE), Root (RMSE), R-Square ( R 2 ), Theil's U-Statistics (TUS), used assess effectiveness model. These measures offer thorough insights into precision, dependability, accuracy predictions. experimental findings show proposed ability GE, MSFT, AMZN values reasonable accuracy. Along framework, DL conventional smoothing approaches combine provide potent tool may help traders investors make wise judgments.

Язык: Английский

Процитировано

2

Study on Optimization Method for CNC Machining Plastic-Shaped Appliances Based on ICOA Algorithm DOI
Guohua Chen, Zhou Bo,

Xiao Zhao

и другие.

International Journal of Precision Engineering and Manufacturing, Год журнала: 2024, Номер unknown

Опубликована: Окт. 8, 2024

Язык: Английский

Процитировано

0

Research on PISC-VMD-GRU carbon emission prediction algorithm DOI
Xin He,

Qiushi Zhang,

Y. H. Wang

и другие.

Опубликована: Июнь 21, 2024

Язык: Английский

Процитировано

0