Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120774 - 120774
Опубликована: Апрель 1, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120774 - 120774
Опубликована: Апрель 1, 2024
Язык: Английский
Energy and AI, Год журнала: 2024, Номер 17, С. 100405 - 100405
Опубликована: Авг. 3, 2024
The state of health (SOH) and remaining useful life (RUL) lithium-ion batteries are crucial for management diagnosis. However, most data-driven estimation methods heavily rely on scarce labeled data, while traditional transfer learning faces challenges in handling domain shifts across various battery types. This paper proposes an enhanced vision-transformer integrating with semi-supervised SOH RUL batteries. A depth-wise separable convolutional is developed to extract local aging details convolutions establishes global dependencies between information using multi-head attention. Maximum mean discrepancy employed initially reduce the distribution difference source target domains, providing a superior starting point fine-tuning model. Subsequently, abundant data same type as through learning, compensating model's limitations capturing characteristics. Consistency regularization incorporates cross-entropy predictions without adversarial perturbations into gradient backpropagation overall In particular, experimental groups 13–15 different types batteries, root square error was less than 0.66 %, relative 3.86 %. Leveraging extensive unlabeled proposed method could achieve accurate RUL.
Язык: Английский
Процитировано
3Energies, Год журнала: 2024, Номер 17(16), С. 4030 - 4030
Опубликована: Авг. 14, 2024
With the rapid development of mobile devices, electronic products, and electric vehicles, lithium batteries have shown great potential for energy storage, attributed to their long endurance high density. In order ensure safety batteries, it is essential monitor state health charge/discharge. There are commonly two methods measuring batteries: destructive testing non-destructive testing. Destructive not suitable in situ or analysis as can cause irreversible deformation damage battery. Herein, this review focuses on three including ultrasonic testing, computer tomography, nuclear magnetic resonance. Ultrasonic widely used crack fatigue detection. X-ray tomography neutron gained increasing attention monitoring status batteries. Nuclear resonance be conduct ex review, summarized, current status, achievements, perspectives technology.
Язык: Английский
Процитировано
3Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 115074 - 115074
Опубликована: Дек. 24, 2024
Язык: Английский
Процитировано
3Energy Storage, Год журнала: 2024, Номер 6(8)
Опубликована: Ноя. 5, 2024
ABSTRACT Accurate estimation of state health (SoH) the battery over long‐term is a critical challenge for management systems in electric vehicles. This due to challenges accurately modeling accelerated aging and degradation phenomena caused by diverse operating conditions battery. paper presents cascaded recurrent neural networks (RNN) with long short‐term memory (LSTM) estimate internal resistance SoH, taking account various abnormal A datasheet‐based model developed using fade equations. The training validation data set LSTM‐RNN are generated subjecting factors that cause degradation, such as fast charging, varying temperatures, overutilization, cell imbalance. trained SoH only once after completion every charge–discharge cycle. error index parameters proposed estimator well within 1%, demonstrating reliability robustness
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120774 - 120774
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
2