Environmental Research, Год журнала: 2025, Номер 277, С. 121635 - 121635
Опубликована: Апрель 17, 2025
Язык: Английский
Environmental Research, Год журнала: 2025, Номер 277, С. 121635 - 121635
Опубликована: Апрель 17, 2025
Язык: Английский
Fermentation, Год журнала: 2025, Номер 11(1), С. 43 - 43
Опубликована: Янв. 18, 2025
The biological methanation process has emerged as a promising alternative to thermo-catalytic methods due its ability operate under milder conditions. However, challenges such low hydrogen solubility and the need for precise trace element supplementation (Fe(II), Ni(II), Co(II)) constrain methane production yield. This study investigates combined effects of concentrations applied pressure on methanation, addressing their synergistic interactions. Using face-centered composite design, batch mode experiments were conducted optimize production. Response Surface Methodology (RSM) Artificial Neural Network (ANN)—Genetic Algorithm (GA) approaches employed model process. RSM identified optimal ranges elements pressure, while ANN-GA demonstrated superior predictive accuracy, capturing nonlinear relationships with high R² (>0.99) minimal prediction errors. optimization indicated 97.9% efficiency reduced conversion time 15.9 h conditions 1.5 bar metal 25.0 mg/L Fe(II), 0.20 0.02 Co(II). Validation confirmed these predictions deviations below 5%, underscoring robustness models. results highlight metals in enhancing gas–liquid mass transfer enzymatic pathways, demonstrating potential computational modeling experimental validation systems, contributing sustainable
Язык: Английский
Процитировано
0Environmental Research, Год журнала: 2025, Номер 277, С. 121635 - 121635
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0