Optimizing Green Urea Production: Integration of Process Simulation, Artificial Intelligence, and Sustainable Technologies DOI
Carlos Antonio Padilla-Esquivel, Francisco Javier López-Flores, Luis Germán Hernández-Pérez

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145371 - 145371

Опубликована: Март 1, 2025

Язык: Английский

Artificial intelligence-driven modeling of biodiesel production from fats, oils, and grease (FOG) with process optimization via particle swarm optimization DOI Creative Commons
Badril Azhar, Muhammad Ikhsan Taipabu, Cries Avian

и другие.

Energy Conversion and Management X, Год журнала: 2025, Номер unknown, С. 101000 - 101000

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A critical review on conversion technology for liquid biofuel production from lignocellulosic biomass DOI

Lin Ge,

Mahmoud M. Ali, Ahmed I. Osman

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 217, С. 115726 - 115726

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

0

General models for predicting the liquid thermal conductivity of fatty acid esters based on smart methods DOI Creative Commons
Chou‐Yi Hsu,

Abu Khair Mohammad Mohsin,

R.L. Jhala

и другие.

Energy Conversion and Management X, Год журнала: 2025, Номер unknown, С. 101023 - 101023

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Performance and emissions of gas turbine engines fueled with karanja oil-based biofuel blends: a machine learning approach using Lasso regression DOI
Ghadah Aldehim, Randa Allafi,

Abdulwhab Alkharashi

и другие.

Aircraft Engineering and Aerospace Technology, Год журнала: 2025, Номер unknown

Опубликована: Апрель 28, 2025

Purpose This study aims to investigate the performance and emission characteristics of gas turbine engines operating on biofuel blends derived from karanja oil as a potential alternative conventional Jet-A fuel. Design/methodology/approach The tested three blends: JA20 (20% oil, 80% Jet-A), JA30 (30% 70% Jet-A) JA40 (40% 60% diesel). Engine parameters, including thrust output, thrust-specific fuel consumption (TSFC) inlet temperature (TIT), were measured at engine speeds ranging 30,000 80,000 rpm. Exhaust emissions carbon monoxide (CO), dioxide (CO 2 ) nitrogen oxides (NOx) analyzed using analyzer. Additionally, Lasso regression model was used predict micro (MGT) based experimental data. Findings Increasing content in reduced overall increased TSFC lowered TIT compared blend exhibited most significant reduction, with 20% decrease 7.5% increase 4.1% TIT. However, consistently resulted lower CO, CO NOx fuel, reductions up 36%, 6.9% 13.6%, respectively, for blend. effectively captured influence speed composition emissions, achieving an R ² 0.95 0.94 predictions. Originality/value provides insights into feasibility oil-based biofuels engines, demonstrating their reduce while highlighting tradeoffs performance. use predicting offers novel approach assessing MGTs.

Язык: Английский

Процитировано

0

Optimizing Green Urea Production: Integration of Process Simulation, Artificial Intelligence, and Sustainable Technologies DOI
Carlos Antonio Padilla-Esquivel, Francisco Javier López-Flores, Luis Germán Hernández-Pérez

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145371 - 145371

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0