Study on the Energy Consumption Characteristics and the Self-Sufficiency Rate of Rooftop Photovoltaic of University Campus Buildings DOI Creative Commons

Lizhen Gao,

Shidong Wang,

Mingqiang Mao

и другие.

Energies, Год журнала: 2024, Номер 17(14), С. 3535 - 3535

Опубликована: Июль 18, 2024

Campus buildings often face issues with high energy consumption, low efficiency, and significant carbon emissions, making the creation of a green, low-carbon campus urgent. Utilizing solar photovoltaics on rooftops can provide an effective power solution to address consumption. This study focuses university campus, employing DeST consumption simulation software model HVAC systems, electrical devices, hot water loads five typical buildings. It combines this calculations available rooftop areas assess potential for photovoltaics. The results confirm varying annual electricity among different buildings, which directly correlates building size operational schedules. Among types, sports facilities academic have relatively photovoltaic self-sufficiency rates, exceeding 60%, while library has lowest, under 20%. entire rate 35%, significantly addressing issue in campuses. research provides theoretical basis implementing systems achieve savings.

Язык: Английский

Promoting solar energy utilization: Prediction, analysis and evaluation of solar radiation on building surfaces at city scale DOI

Yingjun Yue,

Zengfeng Yan, Pingan Ni

и другие.

Energy and Buildings, Год журнала: 2024, Номер 319, С. 114561 - 114561

Опубликована: Июль 16, 2024

Язык: Английский

Процитировано

15

Advancing urban solar assessment: A deep learning and atmospheric modelling framework for quantifying PV yield and carbon reduction DOI
Muhammad Kamran Lodhi, Yumin Tan, Xiaolu Wang

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115717 - 115717

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

2

Large-scale prediction of solar irradiation, shading impacts, and energy generation on building Façade through urban morphological indicators: A machine learning approach DOI Creative Commons
Hongying Zhao, Chengyang Liu, Rebecca Yang

и другие.

Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114797 - 114797

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

8

From roofs to renewables: Deep learning and geographic information systems insights into a comprehensive urban solar photovoltaic assessment for Stonehaven DOI Creative Commons
Baoling Gui, Lydia Sam, Anshuman Bhardwaj

и другие.

Energy 360., Год журнала: 2024, Номер 1, С. 100006 - 100006

Опубликована: Авг. 5, 2024

As urban solar photovoltaic (PV) construction emerges as a leading renewable energy technology, there is growing focus on its implementation. However, the challenges of scarce, low-resolution, and inaccurate PV-related data sources hinder accurate assessments PV potentials are not conducive to efficient rational smart city planning. This study tackles these by introducing mature, detailed, assessment process, taking Stonehaven an example, aimed at leveraging limited mine more geographic information useful for guiding Initially, utilise existing Digital Surface Model (DSM) optical image data, combined with deep learning techniques potential model, comprehensively assess power generation area. Our results demonstrate that integrating DSM significantly enhances accuracy roof segmentation. Furthermore, compared DeeplabV3, U-Net performs better in Additionally, radiation (SRP) map generated highlights superior receiving capacity south-facing flat roofs. We provide detailed (PPGP) individual building roofs, revealing substantial this area generating up 1.12 × 10^7 kWh electricity per year. Detailed fine-grained PPGP can also help optimise siting resource allocation. our return-on-investment period (ROIP) analysis indicates most roofs have ROIPs between 8.1 11.3 years. The ROIP distribution people make informed investment decisions. Future research directions include enhancing quality, refining segmentation algorithms, exploring assisted planning smarter

Язык: Английский

Процитировано

7

A novel deep learning and GIS integrated method for accurate city-scale assessment of building facade solar energy potential DOI Creative Commons

Chengliang Xu,

Shiao Chen,

Haoshan Ren

и другие.

Applied Energy, Год журнала: 2025, Номер 387, С. 125600 - 125600

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

1

Harnessing Rooftop Solar Photovoltaic Potential in Islamabad, Pakistan: A Remote Sensing and Deep Learning Approach DOI
Muhammad Kamran Lodhi, Yumin Tan, Xiaolu Wang

и другие.

Energy, Год журнала: 2024, Номер 304, С. 132256 - 132256

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

6

Interpretability assessment of convolutional neural network-based fault diagnosis for air handling units working in three seasons DOI
Chenglong Xiong, Hu Yunpeng, Guannan Li

и другие.

Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114876 - 114876

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

New anhydrous de-dusting method for photovoltaic panels using electrostatic adsorption: From the mechanism to experiments DOI
Haoyi Li, Yunpeng Liu, Le Li

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 308, С. 118399 - 118399

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

4

Modeling and analysis of rooftop solar potential in highland and lowland territories: Impact of mountainous topography DOI Creative Commons
Apolline Ferry, Martin Thebault,

B. Nérot

и другие.

Solar Energy, Год журнала: 2024, Номер 275, С. 112632 - 112632

Опубликована: Май 31, 2024

The spatial quantification of solar resources is necessary for the deployment systems and must consider local specificities territories, such as complex topography in mountainous areas. This paper presents a methodology obtaining cadastres, based on Solar Energy Building Envelopes (SEBE) model incorporated QGIS applied to French municipalities. differences potential between plain mountain villages are analyzed through simulation 92 carefully selected located these two types regions. distributions annual rooftop irradiation per building obtained each studied village approximated with Johnson's SU density function. From this arises definition statistical indicators: mode spread at one-third maximum. Main results include mean decrease 189 kWh/m2 higher dispersion 69 villages. Two physical indicators, Sky View Index (SVI) Diffuse Fraction (DFI), defined explain shape distributions. Higher cloud covers (high DFI) presence distant shading effects (low SVI), caused by terrain relief, explains respectively smaller modes observed SVI, DFI latitude fed multiple linear regression model, allowing estimation computational costs than developed methodology. Overall, analysis demonstrates that characteristics environments greatly influence should be considered energy planning.

Язык: Английский

Процитировано

4

Performance and configuration optimization for a Grid-Connected PV power supply system with Demand-Supply matching in a data center’s centralized Water-Cooling system DOI
Rang Tu, Lu Wang, Lanbin Liu

и другие.

Solar Energy, Год журнала: 2024, Номер 276, С. 112667 - 112667

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

4