IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Год журнала: 2024, Номер unknown, С. 1273 - 1279
Опубликована: Июль 7, 2024
Язык: Английский
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Год журнала: 2024, Номер unknown, С. 1273 - 1279
Опубликована: Июль 7, 2024
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2024, Номер 220, С. 108905 - 108905
Опубликована: Апрель 6, 2024
Язык: Английский
Процитировано
16Ecological Informatics, Год журнала: 2024, Номер 84, С. 102882 - 102882
Опубликована: Ноя. 17, 2024
Язык: Английский
Процитировано
5International Soil and Water Conservation Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Agriculture, Год журнала: 2025, Номер 15(3), С. 339 - 339
Опубликована: Фев. 4, 2025
The accurate prediction of soil organic matter (SOM) content is important for sustainable agriculture and effective management. This task particularly challenging due to the variability in factors influencing SOM distribution across different cultivated land types, as well site-specific responses remote sensing data environmental covariates, especially black region northeastern China, where exhibits significant spatial variability. study evaluated variations on importance imagery covariates zones. A total 180 samples (0–20 cm) were collected from Youyi County, Heilongjiang Province, multi-year synthetic bare images 2014 2022 (focusing April May) acquired using Google Earth Engine. Combining three types such drainage, climate topography, area was categorized into dry field paddy field. Then, model constructed random forest regression method accuracy strategies by 10-fold cross-validation. findings indicated that, (1) overall analysis, combining drainage variables May could attain highest accuracy, ranked follows: (RS) > (CLI) (DN) Topography (TP). (2) Zonal analysis conducted with a high degree precision, evidenced an R2 0.72 impressively low RMSE 0.73%. time window monitoring More specifically, optimal frames dryland identified May, while those fields concentrated May. (3) In addition, diverse observed vary types. regions characterized intricate fields, contributions assumed heightened importance. Conversely, featuring flat terrain, roles played more substantial role outcomes. These underscore selecting appropriate inputs improving accuracy.
Язык: Английский
Процитировано
0Journal of Food Measurement & Characterization, Год журнала: 2025, Номер unknown
Опубликована: Март 3, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(7), С. 3753 - 3753
Опубликована: Март 29, 2025
The cultivated land in the black soil of Northeast China (BSNC), due to long-term high-input and high-output utilization, is facing a series challenges such as erosion, compaction, nutrient loss. However, existing quality evaluation (CLQE) lacks regional specificity, making it difficult accurately reflect (CLQ) characteristics across different areas. Therefore, this study proposes comprehensive framework that integrates both functionality degradation risk, establishing an assessment system consisting 18 indicators comprehensively evaluate CLQ BSNC from multiple perspectives. results indicate exhibits declining trend north south, with second- third-grade dominating, accounting for 75.68% total area. overall increases west east, Liaohe Plain Region (LHP) performing best. Low-risk primarily concentrated Songnen (SNP) Western Sandy (WS), covering 38.55% Additionally, finds trade-off between primary productivity function resource utilization efficiency regions, while synergistic relationship observed maintenance functions. This research emphasizes necessity balancing ecological protection achieve sustainable efficient use BSNC.
Язык: Английский
Процитировано
0Land Degradation and Development, Год журнала: 2025, Номер unknown
Опубликована: Апрель 3, 2025
ABSTRACT Given that Sentinel‐2 (S2) multispectral images provide extensive spatial information and ground‐based hyperspectral data capture refined spectral characteristics, their integration can enhance both the comprehensiveness precision of surface acquisition. This study seeks to leverage these sources develop an optimized estimation model for accurately monitoring large‐scale soil organic carbon (SOC) content, thereby addressing current limitations in multi‐source fusion research. In this study, using mathematical transformation discrete wavelet transform process ground delta oasis Weigan Kuqa rivers Xinjiang, China, combination with S2 image, machine learning algorithms were employed construct models SOC content total variables characteristic variables, inversion oases was carried out. We found R ‐DWT‐H9 significantly correlation between ( p < 0.001). The accuracy constructed based on feature selected by SPA IRIV generally higher than variable models. IRIV‐RFR had highest stable capability. values 2 training validation sets 0.66 0.64, respectively. RMSE 1.5 g∙kg −1 , RPD > 1.4. interior oasis, mainly deficient (61.35%) or relatively (8.17%), while periphery it extremely (30.48%). Combine providing a reference evaluating fertility arid regions.
Язык: Английский
Процитировано
0Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(5)
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2024, Номер 220, С. 108921 - 108921
Опубликована: Апрель 10, 2024
Язык: Английский
Процитировано
3Ecological Processes, Год журнала: 2024, Номер 13(1)
Опубликована: Май 1, 2024
Abstract Background Soil organic carbon (SOC) is a critical component of the global cycle, and an accurate estimate regional SOC stock (SOCS) would significantly improve our understanding sequestration cycles. Zoige Plateau, locating in northeastern Qinghai-Tibet has largest alpine marsh wetland worldwide exhibits high sensitivity to climate fluctuations. Despite increasing use optical remote sensing predicting SOCS, obvious limitations Plateau due highly cloudy weather, knowledge on spatial patterns SOCS limited. Therefore, current study, distributions within 100 cm were predicted using XGBoost model—a machine learning approach, by integrating Sentinel-1, Sentinel-2 field observations Plateau. Results The results showed that content exhibited vertical distribution cm, with highest topsoil. tenfold cross-validation approach model satisfactorily efficiency 0.59 root mean standard error 95.2 Mg ha −1 . Predicted distinct heterogeneity average 355.7 ± 123.1 totaled 0.27 × 10 9 carbon. Conclusions High topsoil highlights risks significant loss from human activities Combining Sentinel-1 model, which demonstrates importance selecting modeling approaches satellite images at fine resolution m. Furthermore, study emphasizes potential radar (Sentinel-1) developing mapping, newly developed fine-resolution mapping having important applications land management, ecological restoration, protection efforts
Язык: Английский
Процитировано
3