Russian Journal of Physical Chemistry B, Год журнала: 2024, Номер 18(8), С. 1815 - 1820
Опубликована: Дек. 1, 2024
Язык: Английский
Russian Journal of Physical Chemistry B, Год журнала: 2024, Номер 18(8), С. 1815 - 1820
Опубликована: Дек. 1, 2024
Язык: Английский
TrAC Trends in Analytical Chemistry, Год журнала: 2025, Номер unknown, С. 118295 - 118295
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2024, Номер 225, С. 120245 - 120245
Опубликована: Март 2, 2024
Язык: Английский
Процитировано
3Journal of Molecular Liquids, Год журнала: 2024, Номер 403, С. 124890 - 124890
Опубликована: Май 1, 2024
Язык: Английский
Процитировано
3Aerospace Science and Technology, Год журнала: 2024, Номер 150, С. 109245 - 109245
Опубликована: Май 24, 2024
Язык: Английский
Процитировано
3Frontiers in Chemistry, Год журнала: 2024, Номер 12
Опубликована: Окт. 25, 2024
In this study a Machine Learning model was employed to predict the lipid profile from supercritical fluid extraction (SFE) of microalgae
Язык: Английский
Процитировано
2Опубликована: Май 8, 2024
Software programs for parameter estimation, phase visualization and predictive modeling of supercritical extraction process data using algorithms is presented in this work. A contextually appropriate, iterative, ordinary least squares estimation selection method developed estimating model coefficients density based semi empirical equations associated with data. Visualization the behaviors projected by specific semiempirical equation(s) also performed iteratively plotting three-dimensional surfaces involving state variables solute solubility mole fraction. Predictive input has been implemented three supervised machine learning (Multilayer perceptron, K-nearest neighbors support vector machine). Hyperparameter optimization prior to prediction. Detailed analysis prediction conducted standard scoring metrics descriptive charts. Theoretical inference discrepancies regarding predicted window maximum solubility, efficiency, vapor liquid equilibrium have elucidated from program outputs. In summary, these are first its kind, accurate, reliable simple computational tools evaluating / designing
Язык: Английский
Процитировано
1Опубликована: Авг. 7, 2024
Software programs for parameter estimation, phase visualization and predictive modeling of supercritical extraction process data using algorithms is presented in this work. A contextually appropriate, iterative, ordinary least squares estimation selection method developed estimating model coefficients density based semi empirical equations associated with data. Visualization the behaviors projected by specific semiempirical equation(s) also performed iteratively plotting three-dimensional surfaces involving state variables solute solubility mole fraction. Predictive input has been implemented three supervised machine learning (Multilayer perceptron, K-nearest neighbors Support vector regression). Hyperparameter optimization prior to prediction. Detailed analysis prediction conducted standard scoring metrics descriptive charts. Theoretical inference discrepancies regarding predicted window maximum/optimal solubility, efficiency, vapor liquid equilibrium have elucidated from program outputs. In summary, these are unique, accurate, reliable simple computational tools evaluating/designing
Язык: Английский
Процитировано
1Опубликована: Авг. 8, 2024
Software programs for parameter estimation, phase visualization and predictive modeling of supercritical extraction process data using algorithms is presented in this work. A contextually appropriate, iterative, ordinary least squares estimation selection method developed estimating model coefficients density based semi empirical equations associated with data. Visualization the behaviors projected by specific semiempirical equation(s) also performed iteratively plotting three-dimensional surfaces involving state variables solute solubility mole fraction. Predictive input has been implemented three supervised machine learning (Multilayer perceptron, K-nearest neighbors Support vector regression). Hyperparameter optimization prior to prediction. Detailed analysis prediction conducted standard scoring metrics descriptive charts. Theoretical inference discrepancies regarding predicted window maximum/optimal solubility, efficiency, vapor liquid equilibrium have elucidated from program outputs. In summary, these are unique, accurate, reliable simple computational tools evaluating/designing
Язык: Английский
Процитировано
1Physics of Fluids, Год журнала: 2024, Номер 36(8)
Опубликована: Авг. 1, 2024
In this work, an artificial neural network (ANN) aided vapor–liquid equilibrium (VLE) model is developed and coupled with a fully compressible computational fluid dynamics (CFD) solver to simulate the transcritical processes occurring in high-pressure liquid-fueled propulsion systems. The ANN trained Python using TensorFlow, optimized for inference Open Neural Network Exchange Runtime, C++ based CFD solver. This plug-and-play model/methodology can be used convert any multi-component only open-source packages, without need of in-house VLE development. then study shock-droplet interaction both two- four-component systems turbulent temporal mixing layer (TML), where qualitative quantitative agreement (maximum relative error less than 5%) shown respect results on direct evaluation state-of-the-art situ adaptive tabulation (ISAT) method. method showed 6 times speed-up over 2.2-time ISAT two-component case. faster by 12 interaction. A 7 observed TML case compared while achieving data compression factor 2881. also shows intrinsic load balancing, unlike traditional solvers. strong parallel scalability number processors was all three test cases. Code repository 0D solvers, interface—https://github.com/UMN-CRFEL/ANN_VLE.git.
Язык: Английский
Процитировано
1Fuel, Год журнала: 2024, Номер 378, С. 132772 - 132772
Опубликована: Авг. 23, 2024
Язык: Английский
Процитировано
1