International Journal of Machine Learning and Cybernetics, Год журнала: 2022, Номер 13(11), С. 3607 - 3624
Опубликована: Авг. 1, 2022
Язык: Английский
International Journal of Machine Learning and Cybernetics, Год журнала: 2022, Номер 13(11), С. 3607 - 3624
Опубликована: Авг. 1, 2022
Язык: Английский
Swarm and Evolutionary Computation, Год журнала: 2024, Номер 87, С. 101546 - 101546
Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
12Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109143 - 109143
Опубликована: Авг. 22, 2024
Язык: Английский
Процитировано
10Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101899 - 101899
Опубликована: Март 4, 2025
Язык: Английский
Процитировано
1Pattern Recognition, Год журнала: 2022, Номер 134, С. 109120 - 109120
Опубликована: Окт. 23, 2022
Язык: Английский
Процитировано
37Applied Soft Computing, Год журнала: 2023, Номер 147, С. 110783 - 110783
Опубликована: Авг. 26, 2023
Язык: Английский
Процитировано
21Journal of Structural Integrity and Maintenance, Год журнала: 2023, Номер 8(4), С. 209 - 225
Опубликована: Июль 6, 2023
Feature Selection (FS) is an important step in data-driven structural health monitoring approaches. In this paper, Advanced version of the Binary Slime Mould Algorithm (ABSMA) introduced for feature subset selection to improve performance damage classification techniques. Two operators mutation and crossover are embedded algorithm, overcome stagnation situation involved (BSMA). The proposed ABSMA then a new SHM framework which consists three main steps. first step, time domain responses collected pre-processed extract statistical features. second order extracted features reduced using optimization algorithm find minimal salient by removing irrelevant, redundant data. Finally, optimized vectors used as inputs Neural Network (NN) based models. Benchmark datasets timber bridge model three-story frame structure employed validate algorithm. results show that provides better convergence rate compared other commonly binary algorithms.
Язык: Английский
Процитировано
20Journal of King Saud University - Computer and Information Sciences, Год журнала: 2023, Номер 35(6), С. 101490 - 101490
Опубликована: Янв. 23, 2023
Web applications' popularity has raised attention in various service domains, which increased the concern about cyber-attacks. One of these most serious and frequent web application attacks is a Cross-site scripting attack (XSS). It causes grievous harm to victims. Existing security methods against XSS fail due evolving nature attacks. aspect feature drift changes relevancy degradation performance. Unfortunately, dynamic awareness occurrence missing. Thus, this study attempts fill gap by proposing drift-aware algorithm for detecting evolved The proposed approach selection based on deep Q-network multi-agent (DQN-MAFS) framework. Each agent associated with one responsible selecting or deselecting its feature. DQN-MAFS provides sub-model reward distribution over agents, named as fair FARD-DFS. This framework capable supporting real-time, updates adjustment embedded knowledge long new labelled data arrives. been evaluated using four real datasets length sizes. evaluation process was conducted compared state-of-the-art works. obtained results show superiority our FARD-DFS benchmarks terms majority metrics. improvement percentages mean accuracy F1-measure ranged from 1.01% 12.1% 0.55% 6.88%, respectively, comparison benchmarks. can be deployed an autonomous detection system without need any offline retraining model detect attack.
Язык: Английский
Процитировано
19Applied Soft Computing, Год журнала: 2023, Номер 145, С. 110558 - 110558
Опубликована: Июнь 19, 2023
Язык: Английский
Процитировано
19Applied Soft Computing, Год журнала: 2024, Номер 155, С. 111471 - 111471
Опубликована: Март 6, 2024
The focus of this paper is the use Unmanned Aerial Vehicles (UAVs) for searching multiple targets under uncertain conditions in minimal possible time. problem, known as Minimum Time Search (MTS), belongs to Probabilistic (PS) field and addresses critical missions, such search & rescue, military surveillance. These operations, characterized by complex environments, demand efficient UAV trajectory optimization. multi-target version PS introduces additional challenges, due their higher complexity need wisely distribute UAV's efforts among targets. In order tackle under-explored aspect MTS, we optimize time find all with new Ant Colony Optimization (ACO)-based planner. This novel optimization criterion formulated using Bayes' theory, considering probability models (initial belief motion model) sensor likelihood. Our work contributes significantly (i) developing an objective function tailored (ii) proposing ACO-based planner designed effectively handle complexities moving targets, (iii) introducing a constructive heuristic that used planner, specifically MTS problem. efficacy our approach demonstrated through comprehensive analysis validation across various scenarios, showing superior performance over existing methods problems.
Язык: Английский
Процитировано
9Information Sciences, Год журнала: 2024, Номер 667, С. 120501 - 120501
Опубликована: Март 20, 2024
Язык: Английский
Процитировано
9