An Improved Iterated Greedy Algorithm for Solving Collaborative Helicopter Rescue Routing Problem with Time Window and Limited Survival Time DOI Creative Commons
Xining Cui,

Kaidong Yang,

Xiaoqing Wang

и другие.

Algorithms, Год журнала: 2024, Номер 17(10), С. 431 - 431

Опубликована: Сен. 26, 2024

Research on helicopter dispatching has received considerable attention, particularly in relation to post-disaster rescue operations. The survival chances of individuals trapped emergency situations decrease as time passes, making timely dispatch crucial for successful missions. Therefore, this study investigates a collaborative routing problem with window and limited constraints, solving it using an improved iterative greedy (IIG) algorithm. In the proposed algorithm, heuristic initialization strategy is designed generate efficient feasible initial solution. Then, feasible-first destruction-construction applied enhance algorithm’s exploration ability. Next, problem-specific local search developed improve effectiveness. addition, simulated annealing (SA) method integrated acceptance criterion avoid algorithm from getting optima. Finally, evaluate efficacy IIG, 56 instances were generated based Solomon used simulation tests. A comparative analysis was conducted against six algorithms existing studies. experimental results demonstrate that performs well problem.

Язык: Английский

Q-Learning-Driven Accelerated Iterated Greedy Algorithm for Multi-Scenario Group Scheduling in Distributed Blocking Flowshops DOI
Zhen Li, Yuting Wang, Yuyan Han

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113424 - 113424

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Multi-objective scheduling for surface mount technology workshop: automatic design of two-layer decomposition-based approach DOI
Biao Zhang, Zhixuan Wang, Leilei Meng

и другие.

International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 21

Опубликована: Май 9, 2025

Язык: Английский

Процитировано

0

Combining meta-heuristics and Q-learning for scheduling lot-streaming hybrid flow shops with consistent sublots DOI

Benxue Lu,

Kaizhou Gao, Yaxian Ren

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101731 - 101731

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

3

Energy-efficient Multi-objective Distributed Assembly Permutation Flowshop Scheduling by Q-learning based Meta-heuristics DOI
Hui Yu, Kaizhou Gao, Zhiwu Li

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112247 - 112247

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

3

A comprehensive literature review of the flowshop group scheduling problems: systematic and bibliometric reviews DOI

Nilgün İnce,

Derya Deli̇ktaş, İhsan Hakan Selvi

и другие.

International Journal of Production Research, Год журнала: 2023, Номер 62(12), С. 4565 - 4594

Опубликована: Окт. 5, 2023

AbstractThis paper deals with an overview of flowshop group scheduling problems in the manufacturing environment. The aim this is twofold: (i) making a comprehensive survey research on systems, and (ii) presenting bibliometric analysis. We address general definition provide taxonomy methodologies used previous literature. papers are presented from several perspectives, including utilised objective functions, transformation problem structure, benchmarks existing literature, solution approaches. Additionally, analysis, keyword journal analyses, conducted for articles published between 1986 2022. Finally, suggestions future developments listed to further consolidate area.Keywords: Flowshop problembibliometric analysissystematic analysiscellular manufacturingVOSviewer Disclosure statementNo potential conflict interest was reported by author(s).Data Availability StatementData sharing not applicable article as no new data were created or analysed study.Correction StatementThis has been corrected minor changes. These changes do impact academic content article.Additional informationNotes contributorsNilgün İnceNilgün İnce Ph.D. candidate at Department Industrial Engineering, Sakarya University, Turkey. She obtained BS degree industrial engineering Kütahya Dumlupınar University MS systems management Warwick (WMG) 2018. funded Republic Turkey Ministry National Education during master studies participated projects automotive UK. Her interests include optimisation, hyper-heuristics scheduling. currently works lecturer Alanya Alaaddin Keykubat University.Derya DeliktaşDerya Deliktaş associate professor Engineering Faculty received B.S. Erciyes respectively. did her post-doctoral researcher supported Scientific Technological Research Council (TÜBİTAK) Computer Science Operational Computational Optimisation Learning (COL) Lab School Nottingham (UoN) activities problems, assembly line balancing portfolio artificial intelligence methods, multi-criteria decision mining.İhsan Hakan Selviİhsan Selvi Information Systems He Ph.D.degrees University. Missouri Technology guest researcher. project executive (TÜBİTAK). His smart service information deep learning, optimisation. editorial board Journal Artificial Intelligence Theory Applications. roles assistant director Institute Natural Sciences.

Язык: Английский

Процитировано

6

BDE-Jaya: A binary discrete enhanced Jaya algorithm for multiple automated guided vehicle scheduling problem in matrix manufacturing workshop DOI
Hao Ran, Hongyan Sang, Biao Zhang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101651 - 101651

Опубликована: Июль 11, 2024

Язык: Английский

Процитировано

1

Modelling and optimization of a distributed flow shop group scheduling problem with heterogeneous factories DOI
Jingjing Zhou, Tao Meng, Yangli Jia

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110635 - 110635

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

Distributed hybrid flowshop scheduling with consistent sublots under delivery time windows: A penalty lot-assisted iterated greedy algorithm DOI Creative Commons
Jinli Liu, Yuyan Han, Yuting Wang

и другие.

Egyptian Informatics Journal, Год журнала: 2024, Номер 28, С. 100566 - 100566

Опубликована: Ноя. 11, 2024

Язык: Английский

Процитировано

1

A cascaded flowshop joint scheduling problem with makespan minimization: A mathematical model and shifting iterated greedy algorithm DOI
Chuang Wang,

Quan-Ke Pan,

Hongyan Sang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101489 - 101489

Опубликована: Янв. 24, 2024

Язык: Английский

Процитировано

0

Co-Evolutionary Algorithm for Two-Stage Hybrid Flow Shop Scheduling Problem with Suspension Shifts DOI Creative Commons

Huang Zhijie,

Lin Huang, Debiao Li

и другие.

Mathematics, Год журнала: 2024, Номер 12(16), С. 2575 - 2575

Опубликована: Авг. 20, 2024

Demand fluctuates in actual production. When manufacturers face demand under their maximum capacity, suspension shifts are crucial for cost reduction and on-time delivery. In this case, needed to minimize idle time prevent inventory buildup. Thus, it is essential integrate with scheduling an uncertain production environment. This paper addresses the two-stage hybrid flow shop problem (THFSP) processing times, aiming weighted sum of earliness tardiness. We develop a stochastic integer programming model validate using Gurobi solver. Additionally, we propose dual-space co-evolutionary biased random key genetic algorithm (DCE-BRKGA) parallel evolution solutions scenarios. Considering decision-makers’ risk preferences, use both average pessimistic criteria fitness evaluation, generating two types scenario populations. Testing 28 datasets, value solution (VSS) expected perfect information (EVPI) quantify benefits. Compared scenario, VSS shows that proposed achieves additional gains 0.9% 69.9%. Furthermore, EVPI indicates after eliminating uncertainty, yields potential improvements 2.4% 20.3%. These findings indicate DCE-BRKGA effectively supports varying decision-making providing robust even without known distributions.

Язык: Английский

Процитировано

0