Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110755 - 110755
Опубликована: Ноя. 1, 2024
Язык: Английский
Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110755 - 110755
Опубликована: Ноя. 1, 2024
Язык: Английский
Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101643 - 101643
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
10Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 127, С. 107434 - 107434
Опубликована: Ноя. 11, 2023
Язык: Английский
Процитировано
21Applied Soft Computing, Год журнала: 2023, Номер 147, С. 110714 - 110714
Опубликована: Авг. 11, 2023
Язык: Английский
Процитировано
18Expert Systems with Applications, Год журнала: 2024, Номер 251, С. 123970 - 123970
Опубликована: Апрель 17, 2024
Язык: Английский
Процитировано
8Mathematics, Год журнала: 2024, Номер 12(2), С. 339 - 339
Опубликована: Янв. 19, 2024
This study focuses on the scheduling problem of heterogeneous unmanned surface vehicles (USVs) with obstacle avoidance pretreatment. The goal is to minimize overall maximum completion time USVs. First, we develop a mathematical model for problem. Second, obstacles, an A* algorithm employed generate path between two points where tasks need be performed. Third, three meta-heuristics, i.e., simulated annealing (SA), genetic (GA), and harmony search (HS), are improved solve problems. Based problem-specific knowledge, nine local operators designed improve performance proposed algorithms. In each iteration, Q-learning strategies used select high-quality operators. We aim meta-heuristics by using Q-learning-based Finally, 13 instances different scales adopted validate effectiveness strategies. compare classical existing meta-heuristics. better than compared ones. results comparisons show that HS second Q-learning, + QL2, exhibits strongest competitiveness (the smallest mean rank value 1.00) among 15
Язык: Английский
Процитировано
7IEEE Transactions on Intelligent Transportation Systems, Год журнала: 2024, Номер 25(10), С. 15053 - 15064
Опубликована: Май 17, 2024
In
complex
and
variable
traffic
environments,
efficient
multi-objective
urban
light
scheduling
is
imperative.
However,
the
carbon
emission
problem
accompanying
delays
often
neglected
in
most
existing
literature.
This
study
focuses
on
problems
(MOUTLSP),
concerning
emissions
simultaneously.
First,
a
mathematical
model
firstly
developed
to
describe
MOUTLSP
minimize
vehicle
delays,
pedestrian
emissions.
Second,
three
well-known
meta-heuristics,
namely
genetic
algorithm
(GA),
particle
swarm
optimization
(PSO),
differential
evolution
(DE),
are
improved
solve
MOUTLSP.
Six
problem-feature-based
local
search
operators
(LSO)
designed
based
solution
structure
incorporated
into
iterative
process
of
meta-heuristics.
Third,
nature
utilized
design
two
novel
Q-learning-based
strategies
for
LSO
selection,
respectively.
The
selection
(QAS)
strategy
guides
non-dominated
solutions
obtain
good
trade-off
among
objectives
generates
high-quality
by
selecting
suitable
algorithms.
(QLSS)
employed
seek
premium
neighborhood
throughout
improving
convergence
speed.
effectiveness
improvement
verified
solving
11
instances
with
different
scales.
proposed
algorithms
compared
classical
some
state-of-the-art
problems.
experimental
results
comparisons
demonstrate
that
GA
Язык: Английский
Процитировано
7Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Swarm and Evolutionary Computation, Год журнала: 2025, Номер 96, С. 101945 - 101945
Опубликована: Май 4, 2025
Язык: Английский
Процитировано
1Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101498 - 101498
Опубликована: Фев. 8, 2024
Язык: Английский
Процитировано
6Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2024, Номер 14(6)
Опубликована: Авг. 18, 2024
Abstract This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects QLMA, including parameter adaptation, operator selection, and balancing global exploration local exploitation. QLMA has become a leading solution industries like energy, power systems, engineering, addressing range mathematical challenges. Looking forward, we suggest further integration, transfer learning strategies, techniques to reduce state space. article is categorized under: Technologies > Computational Intelligence Artificial
Язык: Английский
Процитировано
6