Multi-objective integrated harvest and distribution scheduling for fresh agricultural products with farm-to-door requirements using Q-learning and problem knowledge-based cooperative evolutionary algorithms DOI

Xiaomeng Ma,

Xujin Pu, Yaping Fu

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110755 - 110755

Опубликована: Ноя. 1, 2024

Язык: Английский

A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment DOI
Youjun An, Ziye Zhao, Kaizhou Gao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101643 - 101643

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

10

A Q-learning-based multi-objective evolutionary algorithm for integrated green production and distribution scheduling problems DOI
Yushuang Hou, Hongfeng Wang, Xiaoliang Huang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 127, С. 107434 - 107434

Опубликована: Ноя. 11, 2023

Язык: Английский

Процитировано

21

Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems DOI
Wang Liang, Kaizhou Gao, Zhongjie Lin

и другие.

Applied Soft Computing, Год журнала: 2023, Номер 147, С. 110714 - 110714

Опубликована: Авг. 11, 2023

Язык: Английский

Процитировано

18

Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers DOI
Yong Lei, Qianwang Deng,

Mengqi Liao

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 251, С. 123970 - 123970

Опубликована: Апрель 17, 2024

Язык: Английский

Процитировано

8

Solving Heterogeneous USV Scheduling Problems by Problem-Specific Knowledge Based Meta-Heuristics with Q-Learning DOI Creative Commons
Zhenfang Ma, Kaizhou Gao, Hui Yu

и другие.

Mathematics, Год журнала: 2024, Номер 12(2), С. 339 - 339

Опубликована: Янв. 19, 2024

This study focuses on the scheduling problem of heterogeneous unmanned surface vehicles (USVs) with obstacle avoidance pretreatment. The goal is to minimize overall maximum completion time USVs. First, we develop a mathematical model for problem. Second, obstacles, an A* algorithm employed generate path between two points where tasks need be performed. Third, three meta-heuristics, i.e., simulated annealing (SA), genetic (GA), and harmony search (HS), are improved solve problems. Based problem-specific knowledge, nine local operators designed improve performance proposed algorithms. In each iteration, Q-learning strategies used select high-quality operators. We aim meta-heuristics by using Q-learning-based Finally, 13 instances different scales adopted validate effectiveness strategies. compare classical existing meta-heuristics. better than compared ones. results comparisons show that HS second Q-learning, + QL2, exhibits strongest competitiveness (the smallest mean rank value 1.00) among 15

Язык: Английский

Процитировано

7

Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions DOI
Zhongjie Lin, Kaizhou Gao, Naiqi Wu

и другие.

IEEE Transactions on Intelligent Transportation Systems, Год журнала: 2024, Номер 25(10), С. 15053 - 15064

Опубликована: Май 17, 2024

In complex and variable traffic environments, efficient multi-objective urban light scheduling is imperative. However, the carbon emission problem accompanying delays often neglected in most existing literature. This study focuses on problems (MOUTLSP), concerning emissions simultaneously. First, a mathematical model firstly developed to describe MOUTLSP minimize vehicle delays, pedestrian emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE), are improved solve MOUTLSP. Six problem-feature-based local search operators (LSO) designed based solution structure incorporated into iterative process of meta-heuristics. Third, nature utilized design two novel Q-learning-based strategies for LSO selection, respectively. The selection (QAS) strategy guides non-dominated solutions obtain good trade-off among objectives generates high-quality by selecting suitable algorithms. (QLSS) employed seek premium neighborhood throughout improving convergence speed. effectiveness improvement verified solving 11 instances with different scales. proposed algorithms compared classical some state-of-the-art problems. experimental results comparisons demonstrate that GA $+$ QLSS, variant GA, competitive one. research proposes new ideas Q-learning assisted evolutionary firstly. It provides strong support achieving more environmentally friendly management.

Язык: Английский

Процитировано

7

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Learning-driven memetic algorithm for solving integrated distributed production and transportation scheduling problem DOI
Shicun Zhao, Hong Zhou

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 96, С. 101945 - 101945

Опубликована: Май 4, 2025

Язык: Английский

Процитировано

1

Collaborative Q-learning hyper-heuristic evolutionary algorithm for the production and transportation integrated scheduling of silicon electrodes DOI
Rong Hu, Yu-Fang Huang, Xing Wu

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101498 - 101498

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

6

Advancements in Q‐learning meta‐heuristic optimization algorithms: A survey DOI
Yang Yang, Yuchao Gao, Zhe Ding

и другие.

Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2024, Номер 14(6)

Опубликована: Авг. 18, 2024

Abstract This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects QLMA, including parameter adaptation, operator selection, and balancing global exploration local exploitation. QLMA has become a leading solution industries like energy, power systems, engineering, addressing range mathematical challenges. Looking forward, we suggest further integration, transfer learning strategies, techniques to reduce state space. article is categorized under: Technologies > Computational Intelligence Artificial

Язык: Английский

Процитировано

6