A Reinforcement Learning-Based Bi-Population Nutcracker Optimizer for Global Optimization DOI Creative Commons
Yu Li, Yan Zhang

Biomimetics, Год журнала: 2024, Номер 9(10), С. 596 - 596

Опубликована: Окт. 1, 2024

The nutcracker optimizer algorithm (NOA) is a metaheuristic method proposed in recent years. This simulates the behavior of nutcrackers searching and storing food nature to solve optimization problem. However, traditional NOA struggles balance global exploration local exploitation effectively, making it prone getting trapped optima when solving complex problems. To address these shortcomings, this study proposes reinforcement learning-based bi-population called RLNOA. In RLNOA, mechanism introduced better capabilities. At beginning each iteration, raw population divided into an sub-population based on fitness value individual. composed individuals with poor values. An improved foraging strategy random opposition-based learning designed as update for enhance diversity. Meanwhile, Q-learning serves adaptive selector strategies, enabling optimal adjustment sub-population’s across various performance RLNOA evaluated using CEC-2014, CEC-2017, CEC-2020 benchmark function sets, compared against nine state-of-the-art algorithms. Experimental results demonstrate superior algorithm.

Язык: Английский

Optimizing Nile Tilapia growth and production costs in earthen ponds using multi-objective adaptive artificial intelligence systems DOI Creative Commons
Keartisak Sriprateep, Rapeepan Pitakaso, Surajet Khonjun

и другие.

Aquaculture Reports, Год журнала: 2025, Номер 41, С. 102716 - 102716

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

1

Efficient calculation of distributed photovoltaic power generation power prediction via deep learning DOI
Junde Li, Congjun Rao, Mingyun Gao

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122901 - 122901

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems DOI
Shuang Liang, Minghao Yin, Geng Sun

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 88, С. 101603 - 101603

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

3

UniBFS: A novel uniform-solution-driven binary feature selection algorithm for high-dimensional data DOI Creative Commons
Behrouz Ahadzadeh, Moloud Abdar,

Mahdieh Foroumandi

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101715 - 101715

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

3

Multi-Factorial Complex Effects Analysis of Energy Consumption Time Series with the Novel Nonlinear Grey Interaction Model DOI
Qi Ding,

Zhaohu Wang,

Xinping Xiao

и другие.

Computational Economics, Год журнала: 2025, Номер unknown

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

0

An improved Grey Wolf Optimization based heuristic initialization algorithm for feature selection in P2P lending default prediction DOI
Muhammad Sam’an,

Mustafa Mat Deris,

Farikhin

и другие.

International Journal of Computers and Applications, Год журнала: 2025, Номер unknown, С. 1 - 11

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

0

ReliefF guided variable spiral tuna swarm optimization algorithm with somersault foraging for feature selection DOI Creative Commons
Yucai Wang, Jie-Sheng Wang, Min Zhang

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 119, С. 168 - 188

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

0

Time-varying elite sand cat optimisation algorithms for engineering design and feature selection DOI
Li Zhang

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127026 - 127026

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Twin Q-learning-driven forest ecosystem optimization for feature selection DOI
Hongbo Zhang, Jinlong Li, Xiaofeng Yue

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113323 - 113323

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Golden jackal optimization algorithm with a population quality improvement framework for real-world engineering optimization problems DOI
Rui Xue, Kefeng Deng

Evolutionary Intelligence, Год журнала: 2025, Номер 18(3)

Опубликована: Апрель 6, 2025

Язык: Английский

Процитировано

0