fNIRS Classification of Adults with ADHD Enhanced by Feature Selection DOI Creative Commons
Min Hong,

Suh-Yeon Dong,

Roger S. McIntyre

и другие.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, Год журнала: 2024, Номер 33, С. 220 - 231

Опубликована: Дек. 24, 2024

Adult attention deficit hyperactivity disorder (ADHD), a prevalent psychiatric disorder, significantly impacts social, academic, and occupational functioning. However, it has been relatively less prioritized compared to childhood ADHD. This study employed functional near-infrared spectroscopy (fNIRS) during verbal fluency tasks in conjunction with machine learning (ML) techniques differentiate between healthy controls (N=75) ADHD individuals (N=120). Efficient feature selection high-dimensional fNIRS datasets is crucial for improving accuracy. To address this, we propose hybrid method that combines wrapper-based embedded approach, termed Bayesian-Tuned Ridge RFECV (BTR-RFECV). The proposed facilitated streamlined hyperparameter tuning data, thereby reducing the number of features while enhancing HbO from combined frontal temporal regions were key, models achieving precision (89.89%), recall (89.74%), F-1 score (89.66%), accuracy MCC (78.36%), GDR (88.45%). outcomes this highlight promising potential combining ML as diagnostic tools clinical settings, offering pathway reduce manual intervention.

Язык: Английский

MSBKA: A Multi-Strategy Improved Black-Winged Kite Algorithm for Feature Selection of Natural Disaster Tweets Classification DOI Creative Commons
Guangyu Mu, Jiaxue Li,

Zhanhui Liu

и другие.

Biomimetics, Год журнала: 2025, Номер 10(1), С. 41 - 41

Опубликована: Янв. 10, 2025

With the advancement of Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for rescue operation. When faced massive text data, choosing pivotal features, reducing calculation expense, and increasing model classification performance a significant challenge. Therefore, this study proposes multi-strategy improved black-winged kite algorithm (MSBKA) feature selection disaster based on wrapper method's principle. Firstly, BKA by utilizing enhanced Circle mapping, integrating hierarchical reverse learning, introducing Nelder-Mead method. Then, MSBKA combined excellent classifier SVM (RBF kernel function) to construct hybrid model. Finally, MSBKA-SVM performs tweet tasks. The empirical analysis data from four shows that proposed has achieved an accuracy 0.8822. Compared GA, PSO, SSA, BKA, increased 4.34%, 2.13%, 2.94%, 6.35%, respectively. This research proves can play supporting role risk.

Язык: Английский

Процитировано

3

Reinforcement learning guided auto-select optimization algorithm for feature selection DOI
Hongbo Zhang, Xiaofeng Yue,

Xueliang Gao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126320 - 126320

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

2

A correlation-guided cooperative coevolutionary method for feature selection via interaction learning-based space division DOI
Yaqing Hou, Huiyue Sun, Gonglin Yuan

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 93, С. 101846 - 101846

Опубликована: Янв. 14, 2025

Язык: Английский

Процитировано

1

A novel cooperative co-evolutionary algorithm with context vector enhancement strategy for feature selection on high-dimensional classification DOI
Zhaoyang Zhang,

Jianwu Xue

Computers & Operations Research, Год журнала: 2025, Номер unknown, С. 107009 - 107009

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Single-stage filter-based local feature selection using an immune algorithm for high-dimensional microarray data DOI
Yi Wang, Wenshan Li, Tao Li

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112895 - 112895

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Fitness and historical success information-assisted binary particle swarm optimization for feature selection DOI
Shubham Gupta, Saurabh Gupta

Knowledge-Based Systems, Год журнала: 2024, Номер 306, С. 112699 - 112699

Опубликована: Ноя. 10, 2024

Язык: Английский

Процитировано

4

An effective initialization for Fuzzy PSO with Greedy Forward Selection in feature selection DOI
Keerthi Gabbi Reddy, Deepasikha Mishra

International Journal of Data Science and Analytics, Год журнала: 2025, Номер unknown

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

An efficient eigenvector-based crossover for differential evolution: Simplifying with rank-one updates DOI Creative Commons
Tae Jong Choi

AIMS Mathematics, Год журнала: 2025, Номер 10(2), С. 3500 - 3522

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Online feature subset selection for mining feature streams in big data via incremental learning and evolutionary computation DOI
Yelleti Vivek, Vadlamani Ravi,

P. Radha Krishna

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101896 - 101896

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Twin Q-learning-driven forest ecosystem optimization for feature selection DOI
Hongbo Zhang, Jinlong Li, Xiaofeng Yue

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113323 - 113323

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0