Research on Multimodal Prediction of E-Commerce Customer Satisfaction Driven by Big Data DOI Creative Commons
Xiaodong Zhang, Chunrong Guo

Applied Sciences, Год журнала: 2024, Номер 14(18), С. 8181 - 8181

Опубликована: Сен. 11, 2024

This study deeply integrates multimodal data analysis and big technology, proposing a learning framework that consolidates various information sources, such as user geographic location, behavior data, product attributes, to achieve more comprehensive understanding prediction of consumer behavior. By comparing the performance unimodal approaches in handling complex cross-border e-commerce it was found models using Adam optimizer significantly outperformed traditional terms accuracy loss rate. The improvements were particularly notable training testing accuracy. demonstrates efficiency superiority methods capturing analyzing heterogeneous data. Furthermore, explores validates potential enhance customer satisfaction environment. Based on core findings, specific applications technology operations further explored. A series innovative strategies aimed at improving operational efficiency, enhancing satisfaction, increasing global market competitiveness proposed.

Язык: Английский

Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness DOI

Qiang Wang,

Fuyu Zhang, Rongrong Li

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 447, С. 141298 - 141298

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

160

E-commerce for a sustainable future: integrating trust, green supply chain management and online shopping satisfaction DOI

Fazila Jalil,

Jianhua Yang, Manaf Al‐Okaily

и другие.

Asia Pacific Journal of Marketing and Logistics, Год журнала: 2024, Номер 36(10), С. 2354 - 2370

Опубликована: Март 8, 2024

Purpose This study embarks on a comprehensive investigation into the intricate relationship between consumer trust in e-commerce platforms and adoption of Green Supply Chain Management (GSCM). It delves multifaceted analysis how these dynamics influence landscape online shopping, with specific focus four critical dimensions: efficiency purchasing processes, fulfillment product delivery commitments, convenience associated e-platform utilization, safeguarding consumers' personal information. Design/methodology/approach research employs sophisticated Structural Equation Modeling (SEM) techniques, facilitated by SPSS SmartPLS software, to meticulously analyze amassed data subject formulated hypotheses rigorous testing. The empirical foundation this draws from sample 377 randomly selected shoppers, providing robust basis for its insights. Findings At core, is squarely focused unraveling within highlighting pivotal role played GSCM making shopping more ecologically responsible sustainable. Of paramount importance novel dimension introduced integration platforms, practices, multifarious dimensions all unified conceptual framework. Trust leads GSCM. determines satisfaction, i.e. efficiency, fulfillment, convenience, privacy. Finally, mediates satisfaction. Practical implications holistic approach represents ground-breaking contribution existing body literature. presents fresh perspective interactions that define contemporary landscape. Originality/value initial integrates GSCM, single framework through UTAUT2.

Язык: Английский

Процитировано

24

The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis DOI
Yufei Zhong,

Xuesheng Chen,

Zhixian Wang

и другие.

Energy Economics, Год журнала: 2024, Номер 132, С. 107479 - 107479

Опубликована: Март 18, 2024

Язык: Английский

Процитировано

21

The Mediating Role of Supply Chain Digitization in the Relationship between Cross-Border E-Commerce Development and Regional Economic Growth DOI
Xiaowen Wang, Hui Zhang, Meng Shi

и другие.

Finance research letters, Год журнала: 2025, Номер unknown, С. 106830 - 106830

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Supply chain challenges and energy insecurity: The role of AI in facilitating renewable energy transition DOI
Lingxiao Li, Jun Wen,

Yan Jun Li

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108378 - 108378

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

2

Artificial intelligence capabilities, open innovation, and business performance – Empirical insights from multinational B2B companies DOI
Saumyaranjan Sahoo, Satish Kumar, Naveen Donthu

и другие.

Industrial Marketing Management, Год журнала: 2023, Номер 117, С. 28 - 41

Опубликована: Дек. 19, 2023

Язык: Английский

Процитировано

30

Unleashing digital transformation to achieve the sustainable development goals across multiple sectors DOI Creative Commons
Vincenzo Varriale, Mark Anthony Camilleri, Antonello Cammarano

и другие.

Sustainable Development, Год журнала: 2024, Номер unknown

Опубликована: Июль 27, 2024

Abstract Digital technologies have the potential to support achieving Sustainable Development Goals (SDGs). Existing scientific literature lacks a comprehensive analysis of triple link: “digital – different industry sectors SDGs”. By systematically analyzing extant literature, 1098 sustainable business practices been collected from 578 papers, using 11 digital in 17 industries achieve SDGs. For instance, find that artificial intelligence can be used affordable and clean energy (SDG 7), responsible consumption production 12) as well address climate change 13). Further, geospatial may applied agricultural reduce hunger various domains 2), foster good health well‐being 3), improve availability water sanitation facilities 6), raise awareness on 12), safeguard life land 15), among other insights.

Язык: Английский

Процитировано

12

Artificial intelligence orientation and internationalization speed: A knowledge management perspective DOI
Yang Liu,

Zhenzhou Ying,

Ying Ying

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 205, С. 123517 - 123517

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

7

An Integrated Q-Rung Orthopair Fuzzy (Q-ROF) for the Selection of Supply-Chain Management DOI Open Access
Babak Daneshvar Rouyendegh, Çiğdem Sıcakyüz

Sustainability, Год журнала: 2024, Номер 16(12), С. 4901 - 4901

Опубликована: Июнь 7, 2024

The integration of sustainable indicators into supply-chain management (SCM), including cost, innovation capability, quality, service long-term cooperation, environmental system, pollution reduction, green image, social responsibility, and employment practices, has become essential for conducting strategic analyses the entire process competitive advantage. This study proposes a fuzzy multi-criteria decision-making (MCDM) method to solve SCM issues. To navigate this complexity, multi-criterion framework is employed, integrating MCDM methods with logic effectively address subjective criteria. innovative approach not only enhances (SCM) but also emphasizes necessity ongoing in tackling contemporary challenges. It serves as cornerstone supplier selection practices optimizing processes. In study, hybrid proposed selection. addresses by utilizing evaluations from expert decision-makers based on predetermined comprehensive ensures that all relevant factors are considered, promoting efficient management.

Язык: Английский

Процитировано

6

Factors influencing the adoption of artificial intelligence in e-commerce by small and medium-sized enterprises DOI Creative Commons

Soliman Aljarboa

International Journal of Information Management Data Insights, Год журнала: 2024, Номер 4(2), С. 100285 - 100285

Опубликована: Сен. 12, 2024

Язык: Английский

Процитировано

6