Toward Economic Recovery: Can Industrial Intelligence Improve Total Factor Productivity? DOI
Ningning Ni, Xinya Chen, Yifan Guo

и другие.

Journal of the Knowledge Economy, Год журнала: 2024, Номер unknown

Опубликована: Окт. 31, 2024

Язык: Английский

The effect of foreign aid on carbon emissions in recipient countries: Evidence from China DOI
Haijun Wang, Yongming Wang, Xue Zhang

и другие.

Technological Forecasting and Social Change, Год журнала: 2023, Номер 200, С. 123104 - 123104

Опубликована: Дек. 21, 2023

Язык: Английский

Процитировано

11

Tech Business Analytics in Quaternary Industry Sector DOI Open Access
Sachin Kumar,

Krishna Prasad K,

P. S. Aithal

и другие.

International Journal of Case Studies in Business IT and Education, Год журнала: 2024, Номер unknown, С. 69 - 159

Опубликована: Апрель 19, 2024

Purpose: The knowledge-based segment of the economy is referred to as "quaternary sector," which comprises businesses like information technology, telecommunications, research and development, other professional services. Businesses in this industry may find that technology-driven business analytics greatly aids helping them make data-driven decisions, optimize workflows, enhance overall performance. Utilizing technology analyse can significantly improve market trends, consumer behaviour, an organization's operational Through analysis data, companies more informed decisions support expansion competitiveness. Analytics tools assist identifying inefficiencies their processes operations so they changes reduce expenses, boost output, ultimately revenue. Customer loyalty satisfaction rise a result this. Information regarding emerging technologies integration with data science prediction trends could present chances for growth innovation. Methodology: There are particular potential challenges Quaternary sector because its emphasis on activities, innovation, cutting-edge technology. Here, we methodical strategy using industry, allowing obtain useful long-term planning calculations. This approach gives framework utilizing analytics. helps competitive advantages increasingly environment by access important insights spur Findings/Result: study looks at how digital have been used control from birth present. Originality/Value: An explanation tech differs traditional within industry. It also includes general design be technical purposes, it examines thirty recently submitted recommendations related Tech Business industries. Paper Type: Exploratory research.

Язык: Английский

Процитировано

4

Digital technology-enabled carbon-neutral management: A mechanism of supply chain digitalization in carbon performance DOI
Lixu Li, Wenwen Zhu,

Long Wei

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 210, С. 123834 - 123834

Опубликована: Окт. 31, 2024

Язык: Английский

Процитировано

4

Digital Technologies and Sustainable Development: An Insight From Corporate Sector DOI Open Access
Sohail Ahmad Javeed, Xiaoping Yang, Rashid Latief

и другие.

Sustainable Development, Год журнала: 2025, Номер unknown

Опубликована: Янв. 9, 2025

ABSTRACT The excessive utilization of industrial output has drawn significant attention from authorities toward sustainable development. Given the substantial environmental challenges posed by sector, development emerged as a paramount concern for scholars and organizations alike. In this context, considerable emphasis been placed on significance digitization. Digital technologies, particularly blockchain technology (BCH) digital finance (DF), are transforming landscape business economy, facilitating corporate (CSD), enhancing social practices, fostering green innovation. Through application various econometric strategies using Chinese sector sample study, we found that BCH effectively promotes innovation activities. Additionally, our analysis underscores critical role DF in advancing practices Notably, highlight importance human capital moderating factor strengthens relationships between CSD, well CSD. This study offers novel insights into ways, can enhance sustainability presents framework may be utility to policymakers decision‐makers.

Язык: Английский

Процитировано

0

Industrial intelligence and marine pollution in coastal cities: A Chinese city-level study DOI

Jiayu Tian,

Xie Jie

Ocean & Coastal Management, Год журнала: 2025, Номер 264, С. 107621 - 107621

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0

Industry chain risks for the diffusion of low-carbon technologies in the cement industry DOI
Biying Yu,

Jiahao Fu,

Ying Dai

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 382, С. 125404 - 125404

Опубликована: Апрель 18, 2025

Язык: Английский

Процитировано

0

Hybrid variable dictionary learning for monitoring continuous and discrete variables in manufacturing processes DOI
Junxian Li, Keke Huang, Dehao Wu

и другие.

Control Engineering Practice, Год журнала: 2024, Номер 149, С. 105970 - 105970

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

3

Does artificial intelligence improve enterprise carbon emission performance? Evidence from an intelligent transformation policy in China DOI
Jianlong Wang, Yong Liu, Weilong Wang

и другие.

Technology in Society, Год журнала: 2024, Номер 79, С. 102751 - 102751

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3

How does AI affect urban carbon emissions? Quasi-experimental evidence from China's AI innovation and development pilot zones DOI
Kun Zhang,

Zi-Xuan Kou,

Pei-Hua Zhu

и другие.

Economic Analysis and Policy, Год журнала: 2024, Номер unknown

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

3

The Role of Local Government Decarbonization Pressures in Enhancing Urban Industrial Intelligence: An Analysis of Proactive and Reactive Corporate Environmental Governance DOI Open Access
Shuting Li, Zhifeng Wang, J. Lv

и другие.

Sustainability, Год журнала: 2025, Номер 17(9), С. 4145 - 4145

Опубликована: Май 3, 2025

In the context of China’s accelerated “dual transition” towards industrial intelligence and green development, this paper investigates how local government decarbonization pressures affect urban in China. Using Low-Carbon City Pilot policy as a quasi-natural experiment, staggered difference-in-differences approach Causal Forest model reveal following findings: (1) Local significantly boost intelligence. (2) foster intelligent development by encouraging introduction policies, which motivate enterprises to adopt proactive strategies. Meanwhile, compel engage source-based environmental governance, resulting passive response. Together, these approaches enhance (3) Fiscal pressure negatively moderates relationship between (4) There is an inverted U-shaped openness foreign trade Conditional Average Treatment Effect (CATE), while CATE higher for cities with labor costs. (5) Finally, effectively channels into measurable emission reductions. These findings have significant relevance building low-carbon, society.

Язык: Английский

Процитировано

0