Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques DOI Open Access
Surasit Songma,

Watcharakorn Netharn,

Siriluck Lorpunmanee

и другие.

International journal of Computer Networks & Communications, Год журнала: 2024, Номер 16(4), С. 61 - 85

Опубликована: Июль 29, 2024

The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep (DL) techniques, addressing the growing challenge of cybersecurity threats. A thorough process for data preparation, comprising activities like cleaning, normalization, segmentation into training testing sets, lays framework model evaluation. study uses CSE-CIC-IDS 2018 LITNET-2020 datasets compare ML methods (Decision Trees, Random Forest, XGBoost) DL models (CNNs, RNNs, DNNs, MLP) against key performance metrics (Accuracy, Precision, Recall, F1-Score). Decision Tree performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating model's ability detect network breaches effectively. findings highlight EPSO's importance in improving classifiers cybersecurity, proposing a strong NIDS high precision dependability. This extensive analysis not only contributes arena providing road robust intrusion detection solutions, but it also proposes future approaches combat changing landscape

Язык: Английский

Advancing cybersecurity: a comprehensive review of AI-driven detection techniques DOI Creative Commons

A Salem,

Safaa M. Azzam,

O. E. Emam

и другие.

Journal Of Big Data, Год журнала: 2024, Номер 11(1)

Опубликована: Авг. 4, 2024

Abstract As the number and cleverness of cyber-attacks keep increasing rapidly, it's more important than ever to have good ways detect prevent them. Recognizing cyber threats quickly accurately is crucial because they can cause severe damage individuals businesses. This paper takes a close look at how we use artificial intelligence (AI), including machine learning (ML) deep (DL), alongside metaheuristic algorithms better. We've thoroughly examined over sixty recent studies measure effective these AI tools are identifying fighting wide range threats. Our research includes diverse array cyberattacks such as malware attacks, network intrusions, spam, others, showing that ML DL methods, together with algorithms, significantly improve well find respond We compare methods out what they're where could improve, especially face new changing cyber-attacks. presents straightforward framework for assessing Methods in threat detection. Given complexity threats, enhancing regularly ensuring strong protection critical. evaluate effectiveness limitations current proposed models, addition algorithms. vital guiding future enhancements. We're pushing smart flexible solutions adapt challenges. The findings from our suggest protecting against will rely on continuously updating stay ahead hackers' latest tricks.

Язык: Английский

Процитировано

32

An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things DOI

Karima Hassini,

Safae Khalis,

Omar Habibi

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 294, С. 111785 - 111785

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

19

DDoS attack detection and mitigation using deep neural network in SDN environment DOI
Vanlalruata Hnamte, Ashfaq Ahmad Najar, Hong-Nhung Nguyen

и другие.

Computers & Security, Год журнала: 2023, Номер 138, С. 103661 - 103661

Опубликована: Дек. 19, 2023

Язык: Английский

Процитировано

35

Enhanced CNN-LSTM Deep Learning for SCADA IDS Featuring Hurst Parameter Self-Similarity DOI Creative Commons
Asaad Balla, Mohamed Hadi Habaebi, Elfatih A. A. Elsheikh

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 6100 - 6116

Опубликована: Янв. 1, 2024

Supervisory Control and Data Acquisition (SCADA) systems are crucial for modern industrial processes securing them against increasing cyber threats is a significant challenge. This study presents an advanced method bolstering SCADA security by employing modified hybrid deep learning model. A key innovation in this work integrating the Self-similarity Hurst parameter into dataset alongside CNN-LSTM model, significantly boosting Intrusion Detection System's (IDS) capabilities. The parameter, which quantifies self-similarity dataset, instrumental detecting anomalies. Our in-depth analysis of CICIDS2017 sheds light on contemporary attack patterns network traffic behaviors. architecture was substantially altered adding multiple convolutional layers with progressively filters, batch normalization stable training, dropout regularization. Principal Component Analysis (PCA) applied dimensionality reduction, thereby optimizing dataset. Test results demonstrate superior performance model incorporating achieving 95.21% accuracy 82.59% recall, surpassing standard inclusion marks substantial advancement identifying emerging threats, while architectural improvements to led more robust accurate intrusion detection control settings.

Язык: Английский

Процитировано

5

Explainable AI-based innovative hybrid ensemble model for intrusion detection DOI Creative Commons
Usman Ahmed, Jiangbin Zheng, Ahmad Almogren

и другие.

Journal of Cloud Computing Advances Systems and Applications, Год журнала: 2024, Номер 13(1)

Опубликована: Окт. 21, 2024

Abstract Cybersecurity threats have become more worldly, demanding advanced detection mechanisms with the exponential growth in digital data and network services. Intrusion Detection Systems (IDSs) are crucial identifying illegitimate access or anomalous behaviour within computer systems, consequently opposing sensitive information. Traditional IDS approaches often struggle high false positive rates ability to adapt embryonic attack patterns. This work asserts a novel Hybrid Adaptive Ensemble for (HAEnID), an innovative powerful method enhance intrusion detection, different from conventional techniques. HAEnID is composed of string multi-layered ensemble, which consists Stacking (SEM), Bayesian Model Averaging (BMA), Conditional (CEM). combines best these three ensemble techniques ultimate success considerable cut alarms. A key feature adaptive mechanism that allows components change over time as traffic patterns vary new appear. way, would provide adequate protection vectors change. Furthermore, model interpretable explainable using Shapley Additive Explanations (SHAP) Local Interpretable Model-agnostic (LIME). The proposed on CIC-IDS 2017 achieves excellent accuracy (97-98%), demonstrating effectiveness consistency across various configurations. Feature selection further enhances performance, BMA-M (20) reaching 98.79% accuracy. These results highlight potential accurate reliable and, hence, state-of-the-art choice explainability.

Язык: Английский

Процитировано

5

5G-SIID: an intelligent hybrid DDoS intrusion detector for 5G IoT networks DOI

Sapna Sadhwani,

Aakar Mathur,

Raja Muthalagu

и другие.

International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер unknown

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

4

Detecting attacks on the internet of things network in the computing fog layer with an embedded learning approach based on clustering and blockchain DOI

Abdolmanan Babaei Goushlavandani,

Peyman Bayat, Gholamhossein Ekbatanifard

и другие.

Cluster Computing, Год журнала: 2025, Номер 28(4)

Опубликована: Фев. 25, 2025

Язык: Английский

Процитировано

0

A comprehensive framework for cyber threat detection: leveraging AI, NLP, and malware analysis DOI
Nachaat Mohamed

International Journal of Information Technology, Год журнала: 2025, Номер unknown

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

0

Securing SDON with hybrid evolutionary intrusion detection system: An ensemble algorithm for feature selection and classification DOI

Benitha Christinal J,

Ameelia Roseline A

Optical Fiber Technology, Год журнала: 2025, Номер 93, С. 104206 - 104206

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

0

Synergizing Machine Learning: A Comparative Exploration of Hybrid Models for Intrusion Detection DOI

Vinod Sharma,

Dharmesh Shah

Algorithms for intelligent systems, Год журнала: 2025, Номер unknown, С. 145 - 162

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0