
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 19, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 19, 2024
Язык: Английский
Trees Forests and People, Год журнала: 2024, Номер unknown, С. 100693 - 100693
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
0Forests, Год журнала: 2024, Номер 15(11), С. 1975 - 1975
Опубликована: Ноя. 8, 2024
In this paper, an improved MobileNetV3-Small algorithm model is proposed for the problem of poor real-time wildfire identification based on convolutional neural networks (CNNs). Firstly, a dataset constructed and subsequently expanded through image enhancement techniques. Secondly, efficient channel attention mechanism (ECA) utilised instead Squeeze-and-Excitation (SE) module within to enhance model’s speed. Lastly, support vector machine (SVM) employed replace classification layer model, with principal component analysis (PCA) applied before SVM reduce dimensionality features, thereby enhancing SVM’s efficiency. The experimental results demonstrate that achieves accuracy 98.75% average frame rate 93. Compared initial mean has been elevated by 7.23. designed in paper improves speed while maintaining accuracy, advancing development application CNNs field monitoring.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 19, 2024
Язык: Английский
Процитировано
0