Applications of Machine Learning Predictive Modeling for Carbon Quantum Dots DOI
Maryam Salahinejad,

Ali Roozbahani

Challenges and advances in computational chemistry and physics, Год журнала: 2025, Номер unknown, С. 81 - 108

Опубликована: Янв. 1, 2025

Язык: Английский

SERS-based microdevices for use as in vitro diagnostic biosensors DOI
Sungwoon Lee,

Hajun Dang,

Joung‐Il Moon

и другие.

Chemical Society Reviews, Год журнала: 2024, Номер 53(11), С. 5394 - 5427

Опубликована: Янв. 1, 2024

This review explores various microdevices developed for applying SERS technology to in vitro diagnostics and delves into their clinical applications.

Язык: Английский

Процитировано

62

Empowerment of AI algorithms in biochemical sensors DOI

Zhongzeng Zhou,

Tailin Xu, Xueji Zhang

и другие.

TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер 173, С. 117613 - 117613

Опубликована: Фев. 29, 2024

Язык: Английский

Процитировано

25

Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms DOI
Ping Wen, Feng Yang, Haixia Zhao

и другие.

Analytical Chemistry, Год журнала: 2024, Номер 96(4), С. 1454 - 1461

Опубликована: Янв. 15, 2024

In this work, we present a simple and novel digital surface-enhanced Raman spectroscopy (SERS)-microfluidic chip designed for the rapid accurate quantitative detection of microorganisms. The employs high-density inverted pyramid microcavity (IPM) array to separate isolate microbial samples. presence or absence target microorganisms is determined by scanning IPM using SERS identifying characteristic bands. This approach allows "digitization" response each IPM, enabling quantification through application mathematical statistical techniques. Significantly, precise yeast was achieved within concentration range 106–109 cells/mL, with maximum relative standard deviation from calibrated cultivation method being 5.6%. innovative efficiently addresses issue irregularities in detection, which arises due fluctuations intensity poor reproducibility. We strongly believe that SERS-microfluidic holds immense potential diverse applications various microorganisms, including pathogenic bacteria viruses.

Язык: Английский

Процитировано

22

Intelligent vegetable freshness monitoring system developed by integrating eco-friendly fluorescent sensor arrays with deep convolutional neural networks DOI

Dayuan Wang,

Min Zhang, Qibing Zhu

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 488, С. 150739 - 150739

Опубликована: Март 28, 2024

Язык: Английский

Процитировано

22

Straightforwardly Developed Surface-enhanced Raman Scattering (SERS) Biosensors Could Detect Mice Sperms in Low Concentrations of Semen Samples: A Step toward Infertility Diagnosis DOI

Atefe Mohsennezhad,

Hossein Sahbafar, Leila Zeinalizad

и другие.

Chemistry Africa, Год журнала: 2025, Номер unknown

Опубликована: Янв. 3, 2025

Язык: Английский

Процитировано

4

Machine learning in point-of-care testing: innovations, challenges, and opportunities DOI Creative Commons
Gyeo‐Re Han,

Artem Goncharov,

Merve Eryılmaz

и другие.

Nature Communications, Год журнала: 2025, Номер 16(1)

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

4

Advances of machine learning-assisted small extracellular vesicles detection strategy DOI
Qí Zhāng, Ting-Ju Ren, Ke Cao

и другие.

Biosensors and Bioelectronics, Год журнала: 2024, Номер 251, С. 116076 - 116076

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

18

Inspired by human olfactory system: Deep-learning-assisted portable chemo-responsive dye-based odor sensor array for the rapid sensing of shrimp and fish freshness DOI

Chengbin Jiang,

Alan J. X. Guo,

Yuwen Li

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 484, С. 149283 - 149283

Опубликована: Фев. 3, 2024

Язык: Английский

Процитировано

17

Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection DOI
Jianyu Yang, Ge Li, Shihong Chen

и другие.

ACS Sensors, Год журнала: 2024, Номер 9(4), С. 1945 - 1956

Опубликована: Март 26, 2024

Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture flow cytometry, require time-consuming protocols expensive equipment. We present here machine learning-assisted colorimetric sensor array based on recognition ligand-functionalized Fe single-atom nanozymes (SANs) identification microorganisms at order, genus, species levels. Colorimetric arrays built from SAN Fe1–NC functionalized four types ligands, generating unique microbial fingerprints. By integrating trained computational classification model, platform identify more than 10 UTI samples within 1 h. Diagnostic accuracy up 97% was achieved 60 clinical samples, holding great potential translation into practice applications.

Язык: Английский

Процитировано

17

Machine learning-assisted nanosensor arrays: An efficiently high-throughput food detection analysis DOI
Yuechun Li, Wenrui Zhang,

Zhaowen Cui

и другие.

Trends in Food Science & Technology, Год журнала: 2024, Номер 149, С. 104564 - 104564

Опубликована: Май 27, 2024

Язык: Английский

Процитировано

17