UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction DOI Creative Commons
Han Li, Haohao Qu, Xiaojun Tan

и другие.

Scientific Data, Год журнала: 2025, Номер 12(1)

Опубликована: Март 28, 2025

The recent surge in electric vehicles (EVs), driven by a collective push to enhance global environmental sustainability, has underscored the significance of exploring EV charging prediction. To catalyze further research this domain, we introduce UrbanEV - an open dataset showcasing space availability and electricity consumption pioneering city for vehicle electrification, namely Shenzhen, China. offers rich repository data (i.e., occupancy, duration, volume, price) captured at hourly intervals across extensive six-month span over 20,000 individual stations. Beyond these core attributes, also encompasses diverse influencing factors like weather conditions spatial proximity. Comprehensive experiments have been conducted showcase predictive capabilities various models, including statistical, deep learning, transformer-based approaches, using dataset. This is poised propel advancements prediction management, positioning itself as benchmark resource within burgeoning field.

Язык: Английский

Citywide electric vehicle charging demand prediction approach considering urban region and dynamic influences DOI
H. H. Kuang, Kunxiang Deng, Linlin You

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135170 - 135170

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Understanding electric vehicle charging network resilience: Resilience curves and interpretable machine learning DOI
Yuwen Lu, Yan Zhang, Wei Zhai

и другие.

Transportation Research Part D Transport and Environment, Год журнала: 2025, Номер 142, С. 104709 - 104709

Опубликована: Март 21, 2025

Язык: Английский

Процитировано

0

UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction DOI Creative Commons
Han Li, Haohao Qu, Xiaojun Tan

и другие.

Scientific Data, Год журнала: 2025, Номер 12(1)

Опубликована: Март 28, 2025

The recent surge in electric vehicles (EVs), driven by a collective push to enhance global environmental sustainability, has underscored the significance of exploring EV charging prediction. To catalyze further research this domain, we introduce UrbanEV - an open dataset showcasing space availability and electricity consumption pioneering city for vehicle electrification, namely Shenzhen, China. offers rich repository data (i.e., occupancy, duration, volume, price) captured at hourly intervals across extensive six-month span over 20,000 individual stations. Beyond these core attributes, also encompasses diverse influencing factors like weather conditions spatial proximity. Comprehensive experiments have been conducted showcase predictive capabilities various models, including statistical, deep learning, transformer-based approaches, using dataset. This is poised propel advancements prediction management, positioning itself as benchmark resource within burgeoning field.

Язык: Английский

Процитировано

0